Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neurosci ; 42(21): 4326-4341, 2022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35477905

RESUMO

Decades of hippocampal neurophysiology research have linked the hippocampal theta rhythm to voluntary movement. A consistent observation has been a robust correlation between the amplitude (or power) and frequency of hippocampal theta and running speed. Recently, however, it has been suggested that acceleration, not running speed, is the dominating influence on theta frequency. There is an inherent interdependence among these two variables, as acceleration is the rate of change in velocity. Therefore, we investigated theta frequency and amplitude of the local-field potential recorded from the stratum pyramidale, stratum radiatum, and stratum lacunosum moleculare of the CA1 subregion, considering both speed and acceleration in tandem as animals traversed a circular task or performed continuous alternation. In male and female rats volitionally controlling their own running characteristics, we found that running speed carries nearly all of the variability in theta frequency and power, with a minute contribution from acceleration. These results contradicted a recent publication using a speed-clamping task, where acceleration and movement are compelled through the use of a bottomless car (Kropff et al., 2021a). Therefore, we reanalyzed the speed-clamping data replicating a transient increase in theta frequency during acceleration. Compared with track running rats, the speed-clamped animals exhibited lower velocities and acceleration values but still showed a stronger influence of speed on theta frequency relative to acceleration. As navigation is the integration of many sensory inputs that are not necessarily linearly related, we offer caution in making absolute claims regarding hippocampal physiology from correlates garnered from a single behavioral repertoire.SIGNIFICANCE STATEMENT A long-standing, replicable observation has been the increase of hippocampal theta power and frequency with increasing running speed. Recently, however, an experimental approach that clamps the running speed of an animal has suggested that acceleration is the dominant influence. Therefore, we analyzed data from freely behaving rats as well as data from the speed-clamping experiment. In unrestrained behavior, speed remains the dominant behavioral correlate to theta amplitude and frequency. Positive acceleration in the speed-clamp experiment induced a transient increase in theta frequency and power. However, speed retained the dominant influence over theta frequency, changing with velocity in both acceleration and deceleration conditions.


Assuntos
Hipocampo , Ritmo Teta , Aceleração , Animais , Feminino , Hipocampo/fisiologia , Masculino , Ratos , Ritmo Teta/fisiologia
2.
J Neurophysiol ; 121(2): 444-458, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30517044

RESUMO

Oscillations in the hippocampal local field potential at theta and gamma frequencies are prominent during awake behavior and have demonstrated several behavioral correlates. Both oscillations have been observed to increase in amplitude and frequency as a function of running speed. Previous investigations, however, have examined the relationship between speed and each of these oscillation bands separately. Based on energy cascade models where "…perturbations of slow frequencies cause a cascade of energy dissipation at all frequency scales" (Buzsaki G. Rhythms of the Brain, 2006), we hypothesized that cross-frequency interactions between theta and gamma should increase as a function of speed. We examined these relationships across multiple layers of the CA1 subregion, which correspond to synaptic zones receiving different afferents. Across layers, we found a reliable correlation between the power of theta and the power of gamma, indicative of an amplitude-amplitude relationship. Moreover, there was an increase in the coherence between the power of gamma and the phase of theta, demonstrating increased phase-amplitude coupling with speed. Finally, at higher velocities, phase entrainment between theta and gamma increases. These results have important implications and provide new insights regarding how theta and gamma are integrated for neuronal circuit dynamics, with coupling strength determined by the excitatory drive within the hippocampus. Specifically, rather than arguing that different frequencies can be attributed to different psychological processes, we contend that cognitive processes occur across multiple frequency bands simultaneously with organization occurring as a function of the amount of energy iteratively propagated through the brain. NEW & NOTEWORTHY Often, the theta and gamma oscillations in the hippocampus have been believed to be a consequence of two marginally overlapping phenomena. This perspective, however, runs counter to an alternative hypothesis in which a slow-frequency, high-amplitude oscillation provides energy that cascades into higher frequency, lower amplitude oscillations. We found that as running speed increases, all measures of cross-frequency theta-gamma coupling intensify, providing evidence in favor of the energy cascade hypothesis.


Assuntos
Ritmo Gama , Hipocampo/fisiologia , Animais , Potenciais Evocados , Feminino , Masculino , Modelos Neurológicos , Ratos , Ritmo Teta
3.
Neurobiol Learn Mem ; 162: 36-46, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31125611

RESUMO

In order to optimize outcomes in the face of uncertainty, one must recall past experiences and extrapolate to the future by assigning values to different choice outcomes. This behavior requires an interplay between memory and reward valuation, necessitating communication across many brain regions. At the anatomical nexus of this interplay is the perirhinal cortex (PRC). The PRC is densely connected to the amygdala and orbital frontal cortex, regions that have been implicated in reward-based decision making, as well as the hippocampus. Thus, the PRC could serve as a hub for integrating memory, reward, and prediction. The PRC's role in value-based decision making, however, has not been empirically examined. Therefore, we tested the role of the PRC in a spatial delay discounting task, which allows rats to choose between a 1-s delay for a small food reward and a variable delay for a large food reward, with the delay to the large reward increasing after choice of each large reward and decreasing after each small reward. The rat can therefore adjust the delay by consecutively choosing the same reward or stabilize the delay by alternating between sides. The latter has been shown to occur once the 'temporal cost' of the large reward is established and is a decision-making process termed 'exploitation'. When the PRC was bilaterally inactivated with the GABA(A) agonist muscimol, rats spent fewer trials successfully exploiting to maintain a fixed delay compared to the vehicle control condition. Moreover, PRC inactivation resulted in an increased number of vicarious trial and error (VTE) events at the choice point, where rats had to decide between the two rewards. These behavioral patterns suggest that the PRC is critical for maintaining stability in linking a choice to a reward outcome in the face of a variable cost.


Assuntos
Comportamento de Escolha/fisiologia , Desvalorização pelo Atraso/fisiologia , Córtex Perirrinal/fisiologia , Comportamento Espacial/fisiologia , Animais , Comportamento de Escolha/efeitos dos fármacos , Desvalorização pelo Atraso/efeitos dos fármacos , Agonistas de Receptores de GABA-A/farmacologia , Masculino , Muscimol/farmacologia , Córtex Perirrinal/efeitos dos fármacos , Ratos , Comportamento Espacial/efeitos dos fármacos , Fatores de Tempo
4.
Hippocampus ; 22(10): 2080-93, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22987683

RESUMO

Object recognition memory requires the perirhinal cortex (PRC) and this cognitive function declines during normal aging. Recent electrophysiological recordings from young rats have shown that neurons in Layer V of the PRC are activated by three-dimensional objects. Thus, it is possible that age-related object recognition deficits result from alterations in PRC neuron activity in older animals. To examine this, the present study used cellular compartment analysis of temporal activity by fluorescence in situ hybridization (catFISH) with confocal microscopy to monitor cellular distributions of activity-induced Arc RNA in layer V of the PRC. Activity was monitored during two distinct epochs of object exploration. In one group of rats (6 young/6 aged) animals were placed in a familiar testing arena and allowed to explore five different three-dimensional objects for two 5-min sessions separated by a 20-min rest (AA). The second group of animals (6 young/6 aged) also explored the same objects for two 5-min sessions, but the environment was changed between the first and the second epoch (AB). Behavioral data showed that both age groups spent less time exploring objects during the second epoch, even when the environment changed, indicating successful recognition. Although the proportion of active neurons between epochs did not change in the AA group, in the AB group more neurons were active during epoch 2 of object exploration. This recruitment of neurons into the active neural ensemble could serve to signal that familiar stimuli are being encountered in a new context. When numbers of Arc positive neurons were compared between age groups, the old rats had significantly lower proportions of Arc-positive PRC neurons in both the AA and AB behavioral conditions. These data support the hypothesis that age-associated functional alterations in the PRC contribute to declines in stimulus recognition over the lifespan.


Assuntos
Envelhecimento/fisiologia , Córtex Cerebral/fisiologia , Comportamento Exploratório/fisiologia , Fatores Etários , Animais , Córtex Cerebral/citologia , Aprendizagem em Labirinto/fisiologia , Neurônios/fisiologia , Ratos , Ratos Endogâmicos F344 , Reconhecimento Psicológico/fisiologia
5.
Hippocampus ; 22(10): 2032-44, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22987680

RESUMO

The perirhinal cortex (PRC) is known to play an important role in object recognition. Little is known, however, regarding the activity of PRC neurons during the presentation of stimuli that are commonly used for recognition memory tasks in rodents, that is, three-dimensional objects. Rats in the present study were exposed to three-dimensional objects while they traversed a circular track for food reward. Under some behavioral conditions, the track contained novel objects, familiar objects, or no objects. Approximately 38% of PRC neurons demonstrated "object fields" (a selective increase in firing at the location of one or more objects). Although the rats spent more time exploring the objects when they were novel compared to familiar, indicating successful recognition memory, the proportion of object fields and the firing rates of PRC neurons were not affected by the rats' previous experience with the objects. Together, these data indicate that the activity of PRC cells is powerfully affected by the presence of objects while animals navigate through an environment; but under these conditions, the firing patterns are not altered by the relative novelty of objects during successful object recognition.


Assuntos
Potenciais de Ação/fisiologia , Córtex Cerebral/fisiologia , Reconhecimento Psicológico/fisiologia , Recompensa , Animais , Mapeamento Encefálico/métodos , Masculino , Ratos , Ratos Endogâmicos F344
6.
eNeuro ; 6(4)2019.
Artigo em Inglês | MEDLINE | ID: mdl-31324673

RESUMO

Local field potential (LFP) oscillations are primarily shaped by the superposition of postsynaptic currents. Hippocampal LFP oscillations in the 25- to 50-Hz range ("slow γ") are proposed to support memory retrieval independent of other frequencies. However, θ harmonics extend up to 48 Hz, necessitating a study to determine whether these oscillations are fundamentally the same. We compared the spectral analysis methods of wavelet, ensemble empirical-mode decomposition (EEMD), and Fourier transform. EEMD, as previously applied, failed to account for the θ harmonics. Depending on analytical parameters selected, wavelet may convolve over high-order θ harmonics due to the variable time-frequency atoms, creating the appearance of a broad 25- to 50-Hz rhythm. As an illustration of this issue, wavelet and EEMD depicted slow γ in a synthetic dataset that only contained θ and its harmonics. Oscillatory transience cannot explain the difference in approaches as Fourier decomposition identifies ripples triggered to epochs of high-power, 120- to 250-Hz events. When Fourier is applied to high power, 25- to 50-Hz events, only θ harmonics are resolved. This analysis challenges the identification of the slow γ rhythm as a unique fundamental hippocampal oscillation. While there may be instances in which slow γ is present in the rat hippocampus, the analysis presented here shows that unless care is exerted in the application of EEMD and wavelet techniques, the results may be misleading, in this case misrepresenting θ harmonics. Moreover, it is necessary to reconsider the characteristics that define a fundamental hippocampal oscillation as well as theories based on multiple independent γ bands.


Assuntos
Ondas Encefálicas , Hipocampo/fisiologia , Processamento de Sinais Assistido por Computador , Algoritmos , Animais , Feminino , Masculino , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA