RESUMO
Deletion of chromosome 5q is common in prostate cancer and is linked to aggressive disease. Most previous studies focused on 5q21 where CHD1 is located, but deletion of mapping studies has identified a second deletion hotspot at 5q13. To clarify the prevalence and clinical relevance of 5q13 deletions and to determine the relative importance of 5q13 and 5q21 abnormalities, a tissue microarray containing samples from 12 427 prostate cancers was analyzed by fluorescence in situ hybridization. Deletion of 5q13 and 5q21 was found in 13.5% and 10%, respectively, of 7932 successfully analyzed cancers. Deletion was restricted to 5q13 in 49.4% and to 5q21 in 32.0% of cancers with a 5q deletion. Only 18.6% of 5q-deleted cancers had deletions of both loci. Both 5q13 and 5q21 deletions were significantly linked to advanced tumor stage, high Gleason grade, nodal metastasis and early biochemical recurrence (P < .005 each). Cancers with co-deletion of 5q13 and 5q21 had a worse prognosis than cancers with isolated 5q13 or 5q21 deletion (P = .0080). Comparison with TMPRSS2:ERG fusion status revealed that 5q21 deletions were tightly linked to ERG negativity (P < .0001) while 5q13 deletions were unrelated to the ERG status. In summary, 5q13 deletion and 5q21 deletion are common, but independent genomic alterations with different functional effects lead to aggressive prostate cancer.
Assuntos
Cromossomos Humanos Par 5/genética , Hibridização in Situ Fluorescente/métodos , Neoplasias da Próstata/patologia , Deleção de Sequência , Humanos , Metástase Linfática , Masculino , Estadiamento de Neoplasias , Prognóstico , Neoplasias da Próstata/genética , Análise Serial de TecidosRESUMO
Latent Kaposi sarcoma-associated herpesvirus (KSHV) genomes rapidly acquire distinct patterns of the activating histone modification H3K4-me3 as well as repressive H3K27-me3 marks, a modification linked to transcriptional silencing by polycomb repressive complexes (PRC). Interestingly, PRCs have recently been reported to restrict viral gene expression in a number of other viral systems, suggesting they may play a broader role in controlling viral chromatin. If so, it is an intriguing possibility that latency establishment may result from viral subversion of polycomb-mediated host responses to exogenous DNA. To investigate such scenarios we sought to establish whether rapid repression by PRC constitutes a general hallmark of herpesvirus latency. For this purpose, we performed a comparative epigenome analysis of KSHV and the related murine gammaherpesvirus 68 (MHV-68). We demonstrate that, while latently replicating MHV-68 genomes readily acquire distinct patterns of activation-associated histone modifications upon de novo infection, they fundamentally differ in their ability to efficiently attract H3K27-me3 marks. Statistical analyses of ChIP-seq data from in vitro infected cells as well as in vivo latency reservoirs furthermore suggest that, whereas KSHV rapidly attracts PRCs in a genome-wide manner, H3K27-me3 acquisition by MHV-68 genomes may require spreading from initial seed sites to which PRC are recruited as the result of an inefficient or stochastic recruitment, and that immune pressure may be needed to select for latency pools harboring PRC-silenced episomes in vivo. Using co-infection experiments and recombinant viruses, we also show that KSHV's ability to rapidly and efficiently acquire H3K27-me3 marks does not depend on the host cell environment or unique properties of the KSHV-encoded LANA protein, but rather requires specific cis-acting sequence features. We show that the non-canonical PRC1.1 component KDM2B, a factor which binds to unmethylated CpG motifs, is efficiently recruited to KSHV genomes, indicating that CpG island characteristics may constitute these features. In accord with the fact that, compared to MHV-68, KSHV genomes exhibit a fundamentally higher density of CpG motifs, we furthermore demonstrate efficient acquisition of H2AK119-ub by KSHV and H3K36-me2 by MHV-68 (but not vice versa), furthermore supporting the notion that KSHV genomes rapidly attract PRC1.1 complexes in a genome-wide fashion. Collectively, our results suggest that rapid PRC silencing is not a universal feature of viral latency, but that some viruses may rather have adopted distinct genomic features to specifically exploit default host pathways that repress epigenetically naive, CpG-rich DNA.
Assuntos
Herpesvirus Humano 8/genética , Proteínas do Grupo Polycomb/metabolismo , Rhadinovirus/genética , Latência Viral/genética , Animais , Linhagem Celular Transformada , Ilhas de CpG/genética , Epigenoma/genética , Feminino , Regulação Viral da Expressão Gênica/genética , Genoma Viral/genética , Código das Histonas/genética , Histonas/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos BALB CRESUMO
Dysbiosis¸ i.e. changes in microbial composition at a mucosal interface, is implicated in the pathogenesis of many chronic inflammatory and autoimmune diseases. To assess the composition of the microbial upper respiratory tract (URT) community in patients with granulomatosis with polyangiitis (GPA), we used culture-independent high-throughput methods. In this prospective clinical study, nasal swabs were collected from patients with GPA, patients with rheumatoid arthritis (RA, disease control), and healthy controls. Nasal bacterial taxa were assessed using V3-V4 region 16S rRNA amplicon sequencing. Staphylococcus aureus, Haemophilus influenza, and entero- and rhinoviruses were detected using qPCR. Unbiased metagenomic RNA sequencing (UMERS) was performed in a subset of samples to determine the relative abundance of bacterial, fungal, and viral species. A trend toward reduced microbiome diversity was detected in GPA samples compared with healthy controls. The abundance of bacterial taxa and microbial richness were significantly decreased in GPA samples compared with RA samples. The relative abundance of bacterial families shifted, with increased Planococcaceae and decreased Moraxellaceae, Tissierellaceae, Staphylococcaceae, and Propionibacteriaceae in GPA and RA. Further, decreased abundance of Corynebacteriaceae, and Aerococcaceae was observed in GPA samples. Significantly more colonization of S. aureus was seen in the nasal microbiome of GPA compared with RA and healthy control samples. H. influenzae colonization was also observed in GPA samples. UMERS detected the presence of rhinoviral sequences in some GPA samples. Thus, our study uncovered changes in the URT microbial composition in patients with GPA and RA, suggesting that both immunosuppression and disease background affect the URT microbiome. Complex alterations of host-microbiome interactions in the URT could influence chronic endonasal inflammation in GPA.
Assuntos
Disbiose , Granulomatose com Poliangiite/etiologia , Microbiota , Mucosa Respiratória/microbiologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Artrite Reumatoide/imunologia , Biodiversidade , Estudos de Casos e Controles , Biologia Computacional/métodos , Suscetibilidade a Doenças , Feminino , Humanos , Masculino , Metagenômica/métodos , Pessoa de Meia-Idade , RNA Ribossômico 16S , Adulto JovemRESUMO
Differences in T-cell phenotype, particularly the expression of markers of T-cell homeostasis, have been observed in fatal and nonfatal Ebola virus disease (EVD). However, the relationship between these markers with T-cell function and virus clearance during EVD is poorly understood. To gain biological insight into the role of T cells during EVD, combined transcriptomics and T-cell receptor sequencing was used to profile blood samples from fatal and nonfatal EVD patients from the recent West African EVD epidemic. Fatal EVD was characterized by strong T-cell activation and increased abundance of T-cell inhibitory molecules. However, the early T-cell response was oligoclonal and did not result in viral clearance. In contrast, survivors mounted highly diverse T-cell responses, maintained low levels of T-cell inhibitors, and cleared Ebola virus. Our findings highlight the importance of T-cell immunity in surviving EVD and strengthen the foundation for further research on targeting of the dendritic cell-T cell interface for postexposure immunotherapy.
Assuntos
Doença pelo Vírus Ebola/imunologia , Homeostase , Receptores de Antígenos de Linfócitos T/fisiologia , Linfócitos T/imunologia , Biomarcadores , Estudos Transversais , Doença pelo Vírus Ebola/genética , Doença pelo Vírus Ebola/mortalidade , Humanos , TranscriptomaRESUMO
Despite a multitude of p53 immunohistochemistry (IHC) studies, data on the combined effect of nuclear p53 protein accumulation and TP53 genomic inactivation are lacking for prostate cancer. A tissue microarray including 11,152 prostate cancer samples was analyzed by p53 IHC and fluorescence in situ hybridization. Nuclear p53 accumulation was found in 10.1% of patients including 1.4% with high-level and 8.7% with low-level immunostaining. TP53 sequencing revealed that 17 of 22 (77%) cases with high-level p53 immunostaining, but only 3% (1 of 31) low-level p53 cases carried putative dominant-negative mutations. TP53 deletions occurred in 14.8% of cancers. Both deletions and protein accumulation were linked to unfavorable tumor phenotype and prostate specific antigen (PSA) recurrence (p<0.0001 each). The combination of both methods revealed subgroups with remarkable differences in their clinical course. Tumors with either TP53 deletion (14%) or low-level p53 positivity (8.7%) had identical risks of PSA recurrence, which were markedly higher than in cancers without p53 alterations (p<0.0001). Tumors with both p53 deletion and low-level p53 positivity (1.5%) had a worse prognosis than patients with only one of these alterations (p<0.0001). Tumors with strong p53 immunostaining or homozygous inactivation through deletion of one allele and disrupting translocation involving the second allele had the worst outcome, independent from clinical and pathological parameters. These data demonstrate a differential clinical impact of various TP53 alterations in prostate cancer. Strong p53 immunostaining-most likely accompanying dominant negative or oncogenic p53 mutation-has independent prognostic relevance and may thus represent a clinical useful molecular feature of prostate cancer.
Assuntos
Genes p53 , Neoplasias da Próstata/genética , Aberrações Cromossômicas , Inativação Gênica , Humanos , Imuno-Histoquímica , Hibridização in Situ Fluorescente , Calicreínas/metabolismo , Masculino , Análise Multivariada , Modelos de Riscos Proporcionais , Antígeno Prostático Específico/metabolismo , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/cirurgia , Análise Serial de TecidosRESUMO
Increased levels of karyopherin α2 (KPNA2) expression have been described to be linked to poor prognosis in a variety of malignancies. This study was undertaken to evaluate the clinical impact of KPNA2 expression and its association with key genomic alterations in prostate cancers. A tissue microarray containing samples from 11 152 prostate cancers was analyzed for KPNA2 expression by immunohistochemistry. Results were compared with oncological follow-up data and genomic alterations such as TMPRSS2-ERG fusions and deletions of PTEN, 5q21, 6q15 or 3p13. KPNA2 expression was absent or weak in benign prostatic glands and was found to be in weak, moderate or strong intensities in 68.4% of 7964 interpretable prostate cancers. KPNA2 positivity was significantly linked to the presence of ERG rearrangement (P<0.0001). In ERG-negative and -positive prostate cancers, KPNA2 immunostaining was significantly associated with advanced pathological tumor stage (pT3b/pT4), high Gleason grade and early biochemical recurrence (P<0.0001 each). Multivariate analysis including all established prognostic criteria available after surgery revealed that the prognostic role of KPNA2 (P=0.001) was independent of high Gleason grade, advanced pathological tumor stage, high preoperative prostate-specific antigen level and positive surgical margin status (P<0.0001 each). The comparison of KPNA2 expression with deletions of PTEN, 5q21, 6q15 and 3p13 in ERG-positive and -negative cancers revealed a strong link to PTEN deletions in both subgroups (P<0.0001). In conclusion, the strong independent prognostic impact of KPNA2 expression raises the possibility that measurement of KPNA2 expression alone or in combination with other molecular parameters might possibly result in clinically useful information. The data also emphasize a critical role of the functionality of the nuclear import machinery for prostate cancer biology.
Assuntos
Biomarcadores Tumorais/análise , Núcleo Celular/química , Calicreínas/análise , Antígeno Prostático Específico/análise , Prostatectomia/métodos , Neoplasias da Próstata/química , Neoplasias da Próstata/cirurgia , alfa Carioferinas/análise , Idoso , Biomarcadores Tumorais/genética , Deleção Cromossômica , Deleção de Genes , Rearranjo Gênico , Humanos , Imuno-Histoquímica , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Gradação de Tumores , Estadiamento de Neoplasias , PTEN Fosfo-Hidrolase/genética , Modelos de Riscos Proporcionais , Neoplasias da Próstata/sangue , Neoplasias da Próstata/genética , Neoplasias da Próstata/mortalidade , Neoplasias da Próstata/patologia , Fatores de Tempo , Análise Serial de Tecidos , Transativadores/genética , Regulador Transcricional ERG , Resultado do TratamentoRESUMO
TMPRSS2:ERG fusions, in combination with deletion of the phosphatase and tensin homolog (PTEN) tumor suppressor, have been suggested to cooperatively drive tumor progression in prostate cancer. We utilized a novel heterogeneity tissue microarray containing samples from 10 different tumor blocks of 189 prostatectomy specimens to study heterogeneity of genomic PTEN alterations in individual foci. PTEN alterations were found in 48/123 (39%) analyzable individual tumor foci, including 40 foci with deletions, 7 with deletion and rearrangement, and 1 focus with rearrangement only. PTEN was homogeneously aberrant in only 4 (8%) and heterogeneously in 44 (92%) of the foci. We found a specific sequence of molecular events from PTEN breakage followed by deletion of DNA sequences flanking the breakpoint, resulting in homozygous deletion. The observation that 16 of 19 foci with homogeneous ERG positivity had focal PTEN alterations but none of 10 foci with PTEN alterations had focal ERG positivity (P<0.0001) suggests that PTEN alterations typically develop subsequent to ERG fusions. We demonstrate a high level of intratumoral heterogeneity of PTEN alterations with deletions and rearrangements that challenges potential PTEN routine diagnosis testing in biopsies. The observation that PTEN alterations develop subsequent to ERG fusion strongly suggests that ERG expression may directly drive development of PTEN aberrations.
Assuntos
Adenocarcinoma/genética , Proteínas de Fusão Oncogênica/genética , PTEN Fosfo-Hidrolase/genética , Neoplasias da Próstata/genética , Transativadores/genética , Deleção de Genes , Humanos , Imuno-Histoquímica , Hibridização in Situ Fluorescente , Masculino , Análise Serial de Tecidos , Regulador Transcricional ERGRESUMO
Deletion of 3p13 has been reported from about 20% of prostate cancers. The clinical significance of this alteration and the tumour suppressor gene(s) driving the deletion remain to be identified. We have mapped the 3p13 deletion locus using SNP array analysis and performed fluorescence in situ hybridization (FISH) analysis to search for associations between 3p13 deletion, prostate cancer phenotype and patient prognosis in a tissue microarray containing more than 3200 prostate cancers. SNP array analysis of 72 prostate cancers revealed a small deletion at 3p13 in 14 (19%) of the tumours, including the putative tumour suppressors FOXP1, RYBP and SHQ1. FISH analysis using FOXP1-specific probes revealed deletions in 16.5% and translocations in 1.2% of 1828 interpretable cancers. 3p13 deletions were linked to adverse features of prostate cancer, including advanced stage (p < 0.0001), high Gleason grade (p = 0.0125), and early PSA recurrence (p = 0.0015). In addition, 3p13 deletions were linked to ERG(+) cancers and to PTEN deletions (p < 0.0001 each). A subset analysis of ERG(+) tumours revealed that 3p13 deletions occurred independently from PTEN deletions (p = 0.3126), identifying tumours with 3p13 deletion as a distinct molecular subset of ERG(+) cancers. mRNA expression analysis confirmed that all 3p13 genes were down regulated by the deletion. Ectopic over-expression of FOXP1, RYBP and SHQ1 resulted in decreased colony-formation capabilities, corroborating a tumour suppressor function for all three genes. In summary, our data show that deletion of 3p13 defines a distinct and aggressive molecular subset of ERG(+) prostate cancers, which is possibly driven by inactivation of multiple tumour suppressors.
Assuntos
Adenocarcinoma/genética , Deleção Cromossômica , Cromossomos Humanos Par 3/genética , Genes Supressores de Tumor , Neoplasias da Próstata/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/mortalidade , Adenocarcinoma/patologia , Linhagem Celular Tumoral , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Perfilação da Expressão Gênica , Técnicas de Silenciamento de Genes , Alemanha/epidemiologia , Humanos , Estimativa de Kaplan-Meier , Masculino , Recidiva Local de Neoplasia , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas de Fusão Oncogênica/metabolismo , Polimorfismo de Nucleotídeo Único , Próstata/metabolismo , Próstata/patologia , Prostatectomia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/mortalidade , Neoplasias da Próstata/patologia , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Análise Serial de TecidosRESUMO
Prevalence and clinical significance of mammalian target of rapamycin (mTOR) phosphorylation at the serine 2448 is disputed in prostate cancer. A tissue microarray containing 3,261 prostate cancers and 49 normal prostate samples with clinical follow-up data was analyzed for p(Ser2448)-mTOR expression by immunohistochemistry. Moderate to strong p(Ser2448)-mTOR staining was found in all (n = 49) normal prostate tissues, but was lost in 24% or weak in 29% cancers. Moderate and strong staining was found in 36 and 11% of tumors. Loss of p(Ser2448)-mTOR staining was significantly linked to advanced stage (p = 0.0027), high-grade (p = 0.0045), nodal positive cancers (p = 0.0483), early tumor recurrence (p < 0.0001, independently from stage and grade, p = 0.0016), lack of Ets-related gene (ERG) fusion (p < 0.0001), reduced androgen receptor expression (p < 0.0001 each) and increased cell proliferation (p = 0.0092) in all cancers and in the subset of ERG-fusion-positive cancers. Loss of p(Ser2448)-mTOR expression was linked to tumor metastasis (p = 0.0275) in ERG-fusion-positive cancers only. Molecular subset analysis using pre-existing phosphatase and tensin homolog (PTEN) deletion data revealed that loss of p(Ser2448) -mTOR expression is of prognostic relevance and defines a subpopulation of PTEN-deleted and ERG-fusion-positive cancers with a particular poor outcome. The results of our study strongly suggest that loss of p(Ser2448)-mTOR expression is a marker for activated AKT/mTOR signaling. Tumors with concomitant PTEN deletion and activated mTOR signaling indicated by loss of p(Ser2448)-mTOR expression characterize a small (4%) but clinically significant subset of prostate cancers that might optimally benefit from anti-mTOR therapies.
Assuntos
Fusão Gênica , Neoplasias da Próstata/etiologia , Serina-Treonina Quinases TOR/fisiologia , Transativadores/genética , Progressão da Doença , Deleção de Genes , Humanos , Masculino , PTEN Fosfo-Hidrolase/genética , Fosforilação , Prognóstico , Modelos de Riscos Proporcionais , Neoplasias da Próstata/química , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Serina-Treonina Quinases TOR/análise , Regulador Transcricional ERGRESUMO
The phosphatase and tensin homolog deleted on chromosome 10 (PTEN) gene is often altered in prostate cancer. To determine the prevalence and clinical significance of the different mechanisms of PTEN inactivation, we analyzed PTEN deletions in TMAs containing 4699 hormone-naïve and 57 hormone-refractory prostate cancers using fluorescence in situ hybridization analysis. PTEN mutations and methylation were analyzed in subsets of 149 and 34 tumors, respectively. PTEN deletions were present in 20.2% (458/2266) of prostate cancers, including 8.1% heterozygous and 12.1% homozygous deletions, and were linked to advanced tumor stage (P < 0.0001), high Gleason grade (P < 0.0001), presence of lymph node metastasis (P = 0.0002), hormone-refractory disease (P < 0.0001), presence of ERG gene fusion (P < 0.0001), and nuclear p53 accumulation (P < 0.0001). PTEN deletions were also associated with early prostate-specific antigen recurrence in univariate (P < 0.0001) and multivariate (P = 0.0158) analyses. The prognostic impact of PTEN deletion was seen in both ERG fusion-positive and ERG fusion-negative tumors. PTEN mutations were found in 4 (12.9%) of 31 cancers with heterozygous PTEN deletions but in only 1 (2%) of 59 cancers without PTEN deletion (P = 0.027). Aberrant PTEN promoter methylation was not detected in 34 tumors. The results of this study demonstrate that biallelic PTEN inactivation, by either homozygous deletion or deletion of one allele and mutation of the other, occurs in most PTEN-defective cancers and characterizes a particularly aggressive subset of metastatic and hormone-refractory prostate cancers.
Assuntos
Deleção de Genes , Proteínas de Fusão Oncogênica/metabolismo , PTEN Fosfo-Hidrolase/genética , Antígeno Prostático Específico/metabolismo , Neoplasias da Próstata/enzimologia , Neoplasias da Próstata/patologia , Transativadores/metabolismo , Idoso , Biomarcadores Tumorais/metabolismo , Cromossomos Humanos Par 10/genética , Metilação de DNA/genética , Análise Mutacional de DNA , Progressão da Doença , Epigênese Genética , Genoma Humano/genética , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Análise Multivariada , PTEN Fosfo-Hidrolase/metabolismo , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Regiões Promotoras Genéticas/genética , Modelos de Riscos Proporcionais , Recidiva , Regulador Transcricional ERG , Proteína Supressora de Tumor p53/metabolismoRESUMO
Aberrant expression of the transcriptional modulator and early B-cell factor 1 (EBF1) antagonist ZNF423 has been implicated in B-cell leukemogenesis, but its impact on transcriptional circuitries in lymphopoiesis has not been elucidated in a comprehensive manner. Herein, in silico analyses of multiple expression data sets on 1354 acute leukemia samples revealed a widespread presence of ZNF423 in various subtypes of acute lymphoblastic leukemia (ALL). Average expression of ZNF423 was highest in ETV6-RUNX1, B-other, and TCF3-PBX1 ALL followed by BCR-ABL, hyperdiploid ALL, and KMT2A-rearranged ALL. In a KMT2A-AFF1 pro-B ALL model, a CRISPR-Cas9-mediated genetic ablation of ZNF423 decreased cell viability and significantly prolonged survival of mice upon xenotransplantation. For the first time, we characterized the genome-wide binding pattern of ZNF423, its impact on the chromatin landscape, and differential gene activities in a B-lineage context. In general, chromatin-bound ZNF423 was associated with a depletion of activating histone marks. At the transcriptional level, EBF1-dependent transactivation was disrupted by ZNF423, whereas repressive and pioneering activities of EBF1 were not discernibly impeded. Unexpectedly, we identified an enrichment of ZNF423 at canonical EBF1-binding sites also in the absence of EBF1, which was indicative of intrinsic EBF1-independent ZNF423 activities. A genome-wide motif search at EBF1 target gene loci revealed that EBF1 and ZNF423 co-regulated genes often contain SMAD1/SMAD4-binding motifs as exemplified by the TGFB1 promoter, which was repressed by ZNF423 outcompeting EBF1 by depending on its ability to bind EBF1 consensus sites and to interact with EBF1 or SMADs. Overall, these findings underscore the wide scope of ZNF423 activities that interfere with B-cell lymphopoiesis and contribute to leukemogenesis.
Assuntos
Linfopoese , Leucemia-Linfoma Linfoblástico de Células Precursoras , Animais , Linfócitos B , Cromatina , Proteínas de Fusão bcr-abl , Camundongos , Leucemia-Linfoma Linfoblástico de Células Precursoras/genéticaRESUMO
We describe DAMIAN, an open source bioinformatics tool designed for the identification of pathogenic microorganisms in diagnostic samples. By using authentic clinical samples and comparing our results to those from established analysis pipelines as well as conventional diagnostics, we demonstrate that DAMIAN rapidly identifies pathogens in different diagnostic entities, and accurately classifies viral agents down to the strain level. We furthermore show that DAMIAN is able to assemble full-length viral genomes even in samples co-infected with multiple virus strains, an ability which is of considerable advantage for the investigation of outbreak scenarios. While DAMIAN, similar to other pipelines, analyzes single samples to perform classification of sequences according to their likely taxonomic origin, it also includes a tool for cohort-based analysis. This tool uses cross-sample comparisons to identify sequence signatures that are frequently present in a sample group of interest (e.g., a disease-associated cohort), but occur less frequently in control cohorts. As this approach does not require homology searches in databases, it principally allows the identification of not only known, but also completely novel pathogens. Using samples from a meningitis outbreak, we demonstrate the feasibility of this approach in identifying enterovirus as the causative agent.
Assuntos
Biologia Computacional/métodos , Infecções por Enterovirus/diagnóstico , Enterovirus/classificação , Meningite Viral/diagnóstico , Acesso à Informação , Bases de Dados Factuais , Surtos de Doenças , Diagnóstico Precoce , Enterovirus/isolamento & purificação , Estudos de Viabilidade , Genoma Viral , Humanos , SoftwareRESUMO
Lung cancer is the leading cause of cancer-associated mortality. Mutations in the EGFR gene are among the most important inducers of lung tumor development, but success of personalized therapies is still limited because of toxicity or developing resistances. We expressed constitutively active EGFR (EGFRCA) exclusively in the airway system of Drosophila melanogaster and performed comprehensive phenotyping. Ectopic expression of EGFRCA induced massive hyper- and metaplasia, leading to early death. We used the lethal phenotype as a readout and screened a library of FDA-approved compounds and found that among the 1,000 compounds, only the tyrosine kinase inhibitors (TKI) afatinib, gefitinib, and ibrutinib rescued lethality in a whole-animal screening approach. Furthermore, we screened the library in the presence of a subtherapeutic afatinib dose and identified bazedoxifene as a synergistically acting compound that rescues EGFR-induced lethality. Our findings highlight the potential of Drosophila-based whole-animal screening approaches not only to identify specific EGFR inhibitors but also to discover compounds that act synergistically with known TKIs. Moreover, we showed that targeting the EGFR together with STAT-signaling is a promising strategy for lung tumor treatment.
Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Drosophila melanogaster/genética , Receptores ErbB/genética , Indóis/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Animais , Animais Geneticamente Modificados , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Modelos Animais de Doenças , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Sinergismo Farmacológico , Receptores ErbB/metabolismo , Perfilação da Expressão Gênica/métodos , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Mutação , Traqueia/efeitos dos fármacos , Traqueia/metabolismoRESUMO
To assess the risk that mining of seafloor massive sulfides (SMS) from extinct hydrothermal vent environments has for changing the ecosystem irreversibly, we sampled SMS analogous habitats from the Kairei and the Pelagia vent fields along the Indian Ridge. In total 19.8 million 16S rRNA tags from 14 different sites were analyzed and the microbial communities were compared with each other and with publicly available data sets from other marine environments. The chimneys appear to provide habitats for microorganisms that are not found or only detectable in very low numbers in other marine habitats. The chimneys also host rare organisms and may function as a vital part of the ocean's seed bank. Many of the reads from active and inactive chimney samples were clustered into OTUs, with low or no resemblance to known species. Since we are unaware of the chemical reactions catalyzed by these unknown organisms, the impact of this diversity loss and bio-geo-coupling is hard to predict. Given that chimney structures can be considered SMS analogues, removal of sulfide deposits from the seafloor in the Kairei and Pelagia fields will most likely alter microbial compositions and affect element cycling in the benthic regions and probably beyond.
Assuntos
Ecossistema , Fontes Hidrotermais/microbiologia , Microbiota , Sulfetos/isolamento & purificação , Biodiversidade , Oceano Índico , Microbiota/genética , Mineração/métodos , Oceanos e MaresRESUMO
Microalga are of high relevance for the global carbon cycling and it is well-known that they are associated with a microbiota. However, it remains unclear, if the associated microbiota, often found in phycosphere biofilms, is specific for the microalga strains and which role individual bacterial taxa play. Here we provide experimental evidence that Chlorella saccharophila, Scenedesmus quadricauda, and Micrasterias crux-melitensis, maintained in strain collections, are associated with unique and specific microbial populations. Deep metagenome sequencing, binning approaches, secretome analyses in combination with RNA-Seq data implied fundamental differences in the gene expression profiles of the microbiota associated with the different microalga. Our metatranscriptome analyses indicates that the transcriptionally most active bacteria with respect to key genes commonly involved in plant-microbe interactions in the Chlorella (Trebouxiophyceae) and Scenedesmus (Chlorophyceae) strains belong to the phylum of the α-Proteobacteria. In contrast, in the Micrasterias (Zygnematophyceae) phycosphere biofilm bacteria affiliated with the phylum of the Bacteroidetes showed the highest gene expression rates. We furthermore show that effector molecules known from plant-microbe interactions as inducers for the innate immunity are already of relevance at this evolutionary early plant-microbiome level.
RESUMO
BACKGROUND AND AIMS: Amplification of the fibroblast growth factor receptor 1 (FGFR1) is believed to predict response to multi-kinase inhibitors targeting FGFR1. Esophageal cancer is an aggressive disease, for which novel targeted therapies are highly warranted. METHODS: This study was designed to investigate the prevalence and clinical significance of FGFR1 amplification in a tissue microarray containing 346 adenocarcinomas and 254 squamous cell carcinomas of the esophagus, using dual-labeling fluorescence in situ hybridization (FISH) analysis. RESULTS: FGFR1 amplification, defined as a ratio of FGFR1:centromere 8 copy numbers ≥ 2.0, was more frequently seen in squamous cell carcinoma (8.9% of 202 interpretable cases) than in adenocarcinoma (1.6% of 308; p<0.0001). There was no association between FGFR1 amplification and tumor phenotype or clinical outcome. To study potential heterogeneity of FGFR1 amplification, all available tumor blocks from 23 FGFR1 amplified tumors were analyzed on conventional large sections. This analysis revealed complete homogeneity of FGFR1 amplification in 20 (86.9%) primary tumors and in all available lymph node metastases. Remarkably, FGFR1 amplification was also seen in dysplasia adjacent to tumor in 6 of 9 patients with FGFR1 amplified primary cancers. CONCLUSIONS: In conclusion, FGFR1 amplification occurs in a relevant subgroup of carcinomas of the esophagus and may play a particular role for development of squamous cell cancers. The high homogeneity of FGFR1 amplification suggests that patients with FGFR1 amplified esophageal cancers may particularly benefit from anti-FGFR1 therapies and prompt for clinical studies in this tumor type.
Assuntos
Adenocarcinoma/genética , Carcinoma de Células Escamosas/genética , Neoplasias Esofágicas/genética , Amplificação de Genes/fisiologia , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Adenocarcinoma/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Carcinoma de Células Escamosas/patologia , Neoplasias Esofágicas/patologia , Feminino , Humanos , Hibridização in Situ Fluorescente , Metástase Linfática , Masculino , Pessoa de Meia-Idade , PrognósticoRESUMO
Tumor protein D52 (TPD52) is located at chromosome 8q21, a region that is frequently gained or amplified in multiple human cancer types. TPD52 has been suggested as a potential target for new anticancer therapies. In order to analyze TPD52 expression in the most prevalent human cancer types, we employed quantitative PCR to measure TPD52 mRNA levels in formalin-fixed tissue samples from more than 900 cancer tissues obtained from 29 different human cancer types. TPD52 was expressed at varying levels in all tested normal tissues, including skin, lymph node, lung, oral mucosa, breast, endometrium, ovary, vulva, myometrium, liver, pancreas, stomach, kidney, prostate, testis, urinary bladder, thyroid gland, brain, muscle and fat tissue. TPD52 was upregulated in 18/29 (62%) tested cancer types. Strongest expression was found in non-seminoma (56-fold overexpression compared to corresponding normal tissue), seminoma (42-fold), ductal (28-fold) and lobular breast cancer (14-fold). In these tumor types, TPD52 upregulation was found in the vast majority (>80%) of tested samples. Downregulation was found in 11 (38%) tumor types, most strongly in papillary renal cell cancer (-8-fold), leiomyosarcoma (-6-fold), clear cell renal cell cancer (-5-fold), liposarcoma (-5-fold) and lung cancer (-4-fold). These results demonstrate that TPD52 is frequently and strongly upregulated in many human cancer types, which may represent candidate tumor types for potential anti-TPD52 therapies.
Assuntos
Proteínas de Neoplasias/genética , Neoplasias/genética , Reação em Cadeia da Polimerase em Tempo Real , Humanos , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase ReversaRESUMO
BACKGROUND AND AIMS: Transcription factors of the forkhead box P (FOXP1-4) family have been implicated in various human cancer types before. The relevance and role of neuronal transcription factor FOXP2 in prostate cancer is unknown. METHODS: A tissue microarray containing samples from more than 11 000 prostate cancers from radical prostatectomy specimens with clinical follow-up data was analysed for FOXP2 expression by immunohistochemistry. FOXP2 data were also compared with pre-existing ERG fusion (by fluorescence in situ hybridisation and immunohistochemistry) and cell proliferation (Ki67 labelling index) data. RESULTS: There was a moderate to strong FOXP2 protein expression in basal and secretory cells of normal prostatic glands. As compared with normal cells, FOXP2 expression was lost or reduced in 25% of cancers. Strong FOXP2 expression was linked to advanced tumour stage, high Gleason score, presence of lymph node metastases and early tumour recurrence (p<0.0001; each) in ERG fusion-negative, but not in ERG fusion-positive cancers. High FOXP2 expression was linked to high Ki67 labelling index (p<0.0001) in all cancers irrespective of ERG fusion status. CONCLUSIONS: These data demonstrate that similar high FOXP2 protein levels as in normal prostate epithelium exert a 'paradoxical' oncogenic role in 'non fusion-type' prostate cancer. It may be speculated that interaction of FOXP2 with members of pathways that are specifically activated in 'non fusion-type' cancers may be responsible for this phenomenon.
Assuntos
Adenocarcinoma/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Proteínas de Fusão Oncogênica/metabolismo , Antígeno Prostático Específico/metabolismo , Neoplasias da Próstata/metabolismo , Adenocarcinoma/genética , Adenocarcinoma/secundário , Idoso , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Proliferação de Células , Fatores de Transcrição Forkhead/genética , Humanos , Imuno-Histoquímica/métodos , Hibridização in Situ Fluorescente , Antígeno Ki-67/metabolismo , Linfonodos/patologia , Metástase Linfática , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Recidiva Local de Neoplasia , Proteínas de Fusão Oncogênica/genética , Próstata/metabolismo , Próstata/patologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Fatores de Risco , Análise Serial de TecidosRESUMO
Deletions involving the chromosomal band 5q21 are among the most frequent alterations in prostate cancer. Using single-nucleotide polymorphism (SNP) arrays, we mapped a 1.3 megabase minimally deleted region including only the repulsive guidance molecule B (RGMB) and chromodomain helicase DNA-binding protein 1 (CHD1) genes. Functional analyses showed that CHD1 is an essential tumor suppressor. FISH analysis of 2,093 prostate cancers revealed a strong association between CHD1 deletion, prostate-specific antigen (PSA) biochemical failure (P = 0.0038), and absence of ERG fusion (P < 0.0001). We found that inactivation of CHD1 in vitro prevents formation of ERG rearrangements due to impairment of androgen receptor (AR)-dependent transcription, a prerequisite for ERG translocation. CHD1 is required for efficient recruitment of AR to responsive promoters and regulates expression of known AR-responsive tumor suppressor genes, including NKX3-1, FOXO1, and PPARγ. Our study establishes CHD1 as the 5q21 tumor suppressor gene in prostate cancer and shows a key role of this chromatin remodeling factor in prostate cancer biology.
Assuntos
DNA Helicases/genética , Proteínas de Ligação a DNA/genética , Rearranjo Gênico , Genes Supressores de Tumor , Neoplasias da Próstata/genética , Transativadores/metabolismo , Linhagem Celular Tumoral , Cromossomos Humanos Par 5 , Deleção de Genes , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Hibridização in Situ Fluorescente , Masculino , Análise de Sequência com Séries de Oligonucleotídeos , Polimorfismo de Nucleotídeo Único , Antígeno Prostático Específico/metabolismo , Receptores Androgênicos/metabolismo , Regulador Transcricional ERG , Translocação GenéticaRESUMO
Early-onset prostate cancer (EO-PCA) represents the earliest clinical manifestation of prostate cancer. To compare the genomic alteration landscapes of EO-PCA with "classical" (elderly-onset) PCA, we performed deep sequencing-based genomics analyses in 11 tumors diagnosed at young age, and pursued comparative assessments with seven elderly-onset PCA genomes. Remarkable age-related differences in structural rearrangement (SR) formation became evident, suggesting distinct disease pathomechanisms. Whereas EO-PCAs harbored a prevalence of balanced SRs, with a specific abundance of androgen-regulated ETS gene fusions including TMPRSS2:ERG, elderly-onset PCAs displayed primarily non-androgen-associated SRs. Data from a validation cohort of > 10,000 patients showed age-dependent androgen receptor levels and a prevalence of SRs affecting androgen-regulated genes, further substantiating the activity of a characteristic "androgen-type" pathomechanism in EO-PCA.