Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
BMC Biol ; 19(1): 241, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34749730

RESUMO

BACKGROUND: The rice weevil Sitophilus oryzae is one of the most important agricultural pests, causing extensive damage to cereal in fields and to stored grains. S. oryzae has an intracellular symbiotic relationship (endosymbiosis) with the Gram-negative bacterium Sodalis pierantonius and is a valuable model to decipher host-symbiont molecular interactions. RESULTS: We sequenced the Sitophilus oryzae genome using a combination of short and long reads to produce the best assembly for a Curculionidae species to date. We show that S. oryzae has undergone successive bursts of transposable element (TE) amplification, representing 72% of the genome. In addition, we show that many TE families are transcriptionally active, and changes in their expression are associated with insect endosymbiotic state. S. oryzae has undergone a high gene expansion rate, when compared to other beetles. Reconstruction of host-symbiont metabolic networks revealed that, despite its recent association with cereal weevils (30 kyear), S. pierantonius relies on the host for several amino acids and nucleotides to survive and to produce vitamins and essential amino acids required for insect development and cuticle biosynthesis. CONCLUSIONS: Here we present the genome of an agricultural pest beetle, which may act as a foundation for pest control. In addition, S. oryzae may be a useful model for endosymbiosis, and studying TE evolution and regulation, along with the impact of TEs on eukaryotic genomes.


Assuntos
Besouros , Gorgulhos , Animais , Comunicação Celular , Elementos de DNA Transponíveis/genética , Grão Comestível , Humanos , Gorgulhos/genética
2.
J Exp Biol ; 221(Pt 23)2018 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-30352823

RESUMO

Phenotypic variance is attributed to genetic and non-genetic factors, and only the former are presumed to be inherited and thus suitable for the action of selection. Although increasing amounts of data suggest that non-genetic variability may be inherited, we have limited empirical data in animals. Here, we performed an artificial selection experiment using Drosophila melanogaster inbred lines. We quantified the response to selection for a decrease in chill coma recovery time and an increase in starvation resistance. We observed a weak response to selection in the inbred and outbred lines, with variability across lines. At the end of the selection process, differential expression was detected for some genes associated with epigenetics, the piRNA pathway and canalization functions. As the selection process can disturb the canalization process and increase the phenotypic variance of developmental traits, we also investigated possible effects of the selection process on the number of scutellar bristles, fluctuating asymmetry levels and fitness estimates. These results suggest that, contrary to what was shown in plants, selection of non-genetic variability is not straightforward in Drosophila and appears to be strongly genotype dependent.


Assuntos
Resposta ao Choque Frio , Drosophila melanogaster/fisiologia , Inanição , Animais , Animais Endogâmicos , Temperatura Baixa , Drosophila melanogaster/genética , Feminino , Expressão Gênica , Masculino , Fenótipo , Seleção Genética
3.
Biol Lett ; 12(8)2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27576524

RESUMO

While the evolutionary mechanisms driving eukaryote genome size evolution are still debated, repeated element content appears to be crucial. Here, we reconstructed the phylogeny and identified repeats in the genome of 26 Drosophila exhibiting a twofold variation in genome size. The content in transposable elements (TEs) is highly correlated to genome size evolution among these closely related species. We detected a strong phylogenetic signal on the evolution of both genome size and TE content, and a genome contraction in the Drosophila melanogaster subgroup.


Assuntos
Filogenia , Animais , Elementos de DNA Transponíveis , Drosophila , Evolução Molecular , Tamanho do Genoma
4.
EMBO Rep ; 14(5): 458-64, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23559065

RESUMO

Transposable elements (TEs), whose propagation can result in severe damage to the host genome, are silenced in the animal gonad by Piwi-interacting RNAs (piRNAs). piRNAs produced in the ovaries are deposited in the embryonic germline and initiate TE repression in the germline progeny. Whether the maternally transmitted piRNAs play a role in the silencing of somatic TEs is however unknown. Here we show that maternally transmitted piRNAs from the tirant retrotransposon in Drosophila are required for the somatic silencing of the TE and correlate with an increase in histone H3K9 trimethylation an active tirant copy.


Assuntos
Drosophila/genética , Genes de Insetos , Interferência de RNA , RNA Interferente Pequeno/genética , Retroelementos/genética , Animais , Drosophila/citologia , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Embrião não Mamífero/metabolismo , Feminino , Histonas/metabolismo , Masculino , Metilação , Ovário/citologia , Ovário/metabolismo
5.
G3 (Bethesda) ; 14(3)2024 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-38156703

RESUMO

Odysseus (OdsH) was the first speciation gene described in Drosophila related to hybrid sterility in offspring of mating between Drosophila mauritiana and Drosophila simulans. Its origin is attributed to the duplication of the gene unc-4 in the subgenus Sophophora. By using a much larger sample of Drosophilidae species, we showed that contrary to what has been previously proposed, OdsH origin occurred 62 MYA. Evolutionary rates, expression, and transcription factor-binding sites of OdsH evidence that it may have rapidly experienced neofunctionalization in male sexual functions. Furthermore, the analysis of the OdsH peptide allowed the identification of mutations of D. mauritiana that could result in incompatibility in hybrids. In order to find if OdsH could be related to hybrid sterility, beyond Sophophora, we explored the expression of OdsH in Drosophila arizonae and Drosophila mojavensis, a pair of sister species with incomplete reproductive isolation. Our data indicated that OdsH expression is not atypical in their male-sterile hybrids. In conclusion, we have proposed that the origin of OdsH occurred earlier than previously proposed, followed by neofunctionalization. Our results also suggested that its role as a speciation gene might be restricted to D. mauritiana and D. simulans.


Assuntos
Proteínas de Drosophila , Infertilidade , Animais , Masculino , Evolução Biológica , Drosophila/genética , Proteínas de Drosophila/genética , Hibridização Genética
6.
Virus Evol ; 10(1): veae022, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38617843

RESUMO

Large dsDNA viruses from the Naldaviricetes class are currently composed of four viral families infecting insects and/or crustaceans. Since the 1970s, particles described as filamentous viruses (FVs) have been observed by electronic microscopy in several species of Hymenoptera parasitoids but until recently, no genomic data was available. This study provides the first comparative morphological and genomic analysis of these FVs. We analyzed the genomes of seven FVs, six of which were newly obtained, to gain a better understanding of their evolutionary history. We show that these FVs share all genomic features of the Naldaviricetes while encoding five specific core genes that distinguish them from their closest relatives, the Hytrosaviruses. By mining public databases, we show that FVs preferentially infect Hymenoptera with parasitoid lifestyle and that these viruses have been repeatedly integrated into the genome of many insects, particularly Hymenoptera parasitoids, overall suggesting a long-standing specialization of these viruses to parasitic wasps. Finally, we propose a taxonomical revision of the class Naldaviricetes in which FVs related to the Leptopilina boulardi FV constitute a fifth family. We propose to name this new family, Filamentoviridae.

7.
J Virol ; 86(7): 3675-81, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22278247

RESUMO

Endogenous retroviruses have the ability to become permanently integrated into the genomes of their host, and they are generally transmitted vertically from parent to progeny. With the exception of gypsy, few endogenous retroviruses have been identified in insects. In this study, we describe the tirant endogenous retrovirus in a subset of Drosophila simulans natural populations. By focusing on the envelope gene, we show that the entire retroviral cycle (transcription, translation, and retrotransposition) can be completed for tirant within one population of this species.


Assuntos
Drosophila/virologia , Retrovirus Endógenos/isolamento & purificação , Retroviridae/isolamento & purificação , Animais , Retrovirus Endógenos/classificação , Retrovirus Endógenos/genética , Dados de Sequência Molecular , Filogenia , Retroviridae/classificação , Retroviridae/genética
8.
FASEB J ; 23(5): 1482-9, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19141532

RESUMO

Combining genome sequence analysis and functional analysis, we show that some full-length copies of tirant are present in heterochromatic regions in Drosophila simulans and that when tested in vitro, these copies have a functional promoter. However, when inserted in heterochromatic regions, tirant copies are inactive in vivo, and only transcription of euchromatic copies can be detected. Thus, our data indicate that the localization of the element is a hallmark of its activity in vivo and raise the question of genomic invasions by transposable elements and the importance of their genomic integration sites.


Assuntos
Drosophila/genética , Genoma de Inseto , Retroelementos , Sequências Repetidas Terminais , Animais
9.
Cells ; 9(8)2020 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-32722451

RESUMO

Transposable elements (TEs) are the main components of genomes. However, due to their repetitive nature, they are very difficult to study using data obtained with short-read sequencing technologies. Here, we describe an efficient pipeline to accurately recover TE insertion (TEI) sites and sequences from long reads obtained by Oxford Nanopore Technology (ONT) sequencing. With this pipeline, we could precisely describe the landscapes of the most recent TEIs in wild-type strains of Drosophila melanogaster and Drosophila simulans. Their comparison suggests that this subset of TE sequences is more similar than previously thought in these two species. The chromosome assemblies obtained using this pipeline also allowed recovering piRNA cluster sequences, which was impossible using short-read sequencing. Finally, we used our pipeline to analyze ONT sequencing data from a D. melanogaster unstable line in which LTR transposition was derepressed for 73 successive generations. We could rely on single reads to identify new insertions with intact target site duplications. Moreover, the detailed analysis of TEIs in the wild-type strains and the unstable line did not support the trap model claiming that piRNA clusters are hotspots of TE insertions.


Assuntos
Elementos de DNA Transponíveis/imunologia , Drosophila melanogaster/imunologia , Drosophila/imunologia , Nanoporos , Animais
10.
G3 (Bethesda) ; 9(3): 855-865, 2019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30658967

RESUMO

All genomes contain repeated sequences that are known as transposable elements (TEs). Among these are endogenous retroviruses (ERVs), which are sequences similar to retroviruses and are transmitted across generations from parent to progeny. These sequences are controlled in genomes through epigenetic mechanisms. At the center of the epigenetic control of TEs are small interfering RNAs of the piRNA class, which trigger heterochromatinization of TE sequences. The tirant ERV of Drosophila simulans displays intra-specific variability in copy numbers, insertion sites, and transcription levels, providing us with a well-suited model to study the dynamic relationship between a TE family and the host genome through epigenetic mechanisms. We show that tirant transcript amounts and piRNA amounts are positively correlated in ovaries in normal conditions, unlike what was previously described following divergent crosses. In addition, we describe tirant insertion polymorphism in the genomes of three D. simulans wild-type strains, which reveals a limited number of insertions that may be associated with gene transcript level changes through heterochromatin spreading and have phenotypic impacts. Taken together, our results participate in the understanding of the equilibrium between the host genome and its TEs.


Assuntos
Elementos de DNA Transponíveis , Drosophila simulans/genética , Retrovirus Endógenos/genética , Epigênese Genética , Genoma de Inseto , Interações Hospedeiro-Patógeno , Animais , Drosophila simulans/virologia , Retrovirus Endógenos/fisiologia , Feminino , RNA Interferente Pequeno/metabolismo
11.
Sci Rep ; 7: 40618, 2017 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-28091568

RESUMO

Crosses between close species can lead to genomic disorders, often considered to be the cause of hybrid incompatibility, one of the initial steps in the speciation process. How these incompatibilities are established and what are their causes remain unclear. To understand the initiation of hybrid incompatibility, we performed reciprocal crosses between two species of Drosophila (D. mojavensis and D. arizonae) that diverged less than 1 Mya. We performed a genome-wide transcriptomic analysis on ovaries from parental lines and on hybrids from reciprocal crosses. Using an innovative procedure of co-assembling transcriptomes, we show that parental lines differ in the expression of their genes and transposable elements. Reciprocal hybrids presented specific gene categories and few transposable element families misexpressed relative to the parental lines. Because TEs are mainly silenced by piwi-interacting RNAs (piRNAs), we hypothesize that in hybrids the deregulation of specific TE families is due to the absence of such small RNAs. Small RNA sequencing confirmed our hypothesis and we therefore propose that TEs can indeed be major players of genome differentiation and be implicated in the first steps of genomic incompatibilities through small RNA regulation.


Assuntos
Elementos de DNA Transponíveis/genética , Drosophila/genética , Regulação da Expressão Gênica , Hibridização Genética , Animais , Sequência Conservada/genética , Feminino , Ontologia Genética , Genes de Insetos , Geografia , Padrões de Herança/genética , Masculino , México , RNA Interferente Pequeno/metabolismo , Especificidade da Espécie , Transcriptoma/genética , Estados Unidos
12.
Genome Biol Evol ; 8(3): 556-61, 2016 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-26872773

RESUMO

Genome size (or C-value) can present a wide range of values among eukaryotes. This variation has been attributed to differences in the amplification and deletion of different noncoding repetitive sequences, particularly transposable elements (TEs). TEs can be activated under different stress conditions such as interspecific hybridization events, as described for several species of animals and plants. These massive transposition episodes can lead to considerable genome expansions that could ultimately be involved in hybrid speciation processes. Here, we describe the effects of hybridization and introgression on genome size of Drosophila hybrids. We measured the genome size of two close Drosophila species, Drosophila buzzatii and Drosophila koepferae, their F1 offspring and the offspring from three generations of backcrossed hybrids; where mobilization of up to 28 different TEs was previously detected. We show that hybrid females indeed present a genome expansion, especially in the first backcross, which could likely be explained by transposition events. Hybrid males, which exhibit more variable C-values among individuals of the same generation, do not present an increased genome size. Thus, we demonstrate that the impact of hybridization on genome size can be detected through flow cytometry and is sex-dependent.


Assuntos
Elementos de DNA Transponíveis/genética , Drosophila/genética , Hibridização Genética , Animais , Feminino , Tamanho do Genoma , Hibridização in Situ Fluorescente , Masculino , Retroelementos/genética
13.
J Environ Radioact ; 113: 83-6, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22659421

RESUMO

Genes are important in defining genetic variability, but they do not constitute the largest component of genomes, which in most organisms contain large amounts of various repeated sequences including transposable elements (TEs), which have been shown to account for most of the genome size. TEs contribute to genetic diversity by their mutational potential as a result of their ability to insert into genes or gene regulator regions, to promote chromosomal rearrangements, and to interfere with gene networks. Also, TEs may be activated by environmental stresses (such as temperature or radiation) that interfere with epigenetic regulation systems, and makes them powerful mutation agents in nature. To understand the relationship between genotype and phenotype, we need to analyze the portions of the genome corresponding to TEs in great detail, and to decipher their relationships with the genes. For this purpose, we carried out comparative analyses of various natural populations of the closely-related species Drosophila melanogaster and Drosophila simulans, which differ with regard to their TE amounts as well as their ecology and population size.


Assuntos
Elementos de DNA Transponíveis/genética , Drosophila melanogaster/genética , Drosophila/genética , Animais , Epigênese Genética , Genoma/genética
14.
Gene ; 473(2): 100-9, 2011 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-21156200

RESUMO

Transposable elements (TEs) are indwelling components of genomes, and their dynamics have been a driving force in genome evolution. Although we now have more information concerning their amounts and characteristics in various organisms, we still have little data from overall comparisons of their sequences in very closely-related species. While the Drosophila melanogaster genome has been extensively studied, we have only limited knowledge regarding the precise TE sequences in the genomes of the related species Drosophila simulans, Drosophila sechellia and Drosophila yakuba. In this study we analyzed the number and structure of TE copies in the sequenced genomes of these four species. Our findings show that, unexpectedly, the number of TE insertions in D. simulans is greater than that in D. melanogaster, but that most of the copies in D. simulans are degraded and in small fragments, as in D. sechellia and D. yakuba. This suggests that all three species were invaded by numerous TEs a long time ago, but have since regulated their activity, as the present TE copies are degraded, with very few full-length elements. In contrast, in D. melanogaster, a recent activation of TEs has resulted in a large number of almost-identical TE copies. We have detected variants of some TEs in D. simulans and D. sechellia, that are almost identical to the reference TE sequences in D. melanogaster, suggesting that D. melanogaster has recently been invaded by active TE variants from the other species. Our results indicate that the three species D. simulans, D. sechellia, and D. yakuba seem to be at a different stage of their TE life cycle when compared to D. melanogaster. Moreover, we show that D. melanogaster has been invaded by active TE variants for several TE families likely to come from D. simulans or the ancestor of D. simulans and D. sechellia. The numerous horizontal transfer events implied to explain these results could indicate introgression events between these species.


Assuntos
Elementos de DNA Transponíveis , Drosophila/genética , Genoma de Inseto , Animais , Drosophila melanogaster/genética , Dosagem de Genes , Variação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA