Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Inorg Chem ; 61(50): 20690-20698, 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36475641

RESUMO

Reaction of [Ru(C6H4PPh2)2(Ph2PC6H4AlMe(THF))H] with CO results in clean conversion to the Ru-Al heterobimetallic complex [Ru(AlMePhos)(CO)3] (1), where AlMePhos is the novel P-Al(Me)-P pincer ligand (o-Ph2PC6H4)2AlMe. Under photolytic conditions, 1 reacts with H2 to give [Ru(AlMePhos)(CO)2(µ-H)H] (2) that is characterized by multinuclear NMR and IR spectroscopies. DFT calculations indicate that 2 features one terminal and one bridging hydride that are respectively anti and syn to the AlMe group. Calculations also define a mechanism for H2 addition to 1 and predict facile hydride exchange in 2 that is also observed experimentally. Reaction of 1 with B(C6F5)3 results in Me abstraction to form the ion pair [Ru(AlPhos)(CO)3][MeB(C6F5)3] (4) featuring a cationic [(o-Ph2PC6H4)2Al]+ ligand, [AlPhos]+. The Ru-Al distance in 4 (2.5334(16) Å) is significantly shorter than that in 1 (2.6578(6) Å), consistent with an enhanced Lewis acidity of the [AlPhos]+ ligand. This is corroborated by a blue shift in both the observed and computed νCO stretching frequencies upon Me abstraction. Electronic structure analyses (QTAIM and EDA-ETS) comparing 1, 4, and the previously reported [Ru(ZnPhos)(CO)3] analogue (ZnPhos = (o-Ph2PC6H4)2Zn) indicate that the Lewis acidity of these pincer ligands increases along the series ZnPhos < AlMePhos < [AlPhos]+.

2.
J Am Chem Soc ; 143(13): 5106-5120, 2021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33769815

RESUMO

Using solid-state molecular organometallic (SMOM) techniques, in particular solid/gas single-crystal to single-crystal reactivity, a series of σ-alkane complexes of the general formula [Rh(Cy2PCH2CH2PCy2)(ηn:ηm-alkane)][BArF4] have been prepared (alkane = propane, 2-methylbutane, hexane, 3-methylpentane; ArF = 3,5-(CF3)2C6H3). These new complexes have been characterized using single crystal X-ray diffraction, solid-state NMR spectroscopy and DFT computational techniques and present a variety of Rh(I)···H-C binding motifs at the metal coordination site: 1,2-η2:η2 (2-methylbutane), 1,3-η2:η2 (propane), 2,4-η2:η2 (hexane), and 1,4-η1:η2 (3-methylpentane). For the linear alkanes propane and hexane, some additional Rh(I)···H-C interactions with the geminal C-H bonds are also evident. The stability of these complexes with respect to alkane loss in the solid state varies with the identity of the alkane: from propane that decomposes rapidly at 295 K to 2-methylbutane that is stable and instead undergoes an acceptorless dehydrogenation to form a bound alkene complex. In each case the alkane sits in a binding pocket defined by the {Rh(Cy2PCH2CH2PCy2)}+ fragment and the surrounding array of [BArF4]- anions. For the propane complex, a small alkane binding energy, driven in part by a lack of stabilizing short contacts with the surrounding anions, correlates with the fleeting stability of this species. 2-Methylbutane forms more short contacts within the binding pocket, and as a result the complex is considerably more stable. However, the complex of the larger 3-methylpentane ligand shows lower stability. Empirically, there therefore appears to be an optimal fit between the size and shape of the alkane and overall stability. Such observations are related to guest/host interactions in solution supramolecular chemistry and the holistic role of 1°, 2°, and 3° environments in metalloenzymes.

3.
Chemistry ; 27(9): 3177-3183, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33112000

RESUMO

Single-crystal to single-crystal solid-state molecular organometallic (SMOM) techniques are used for the synthesis and structural characterization of the σ-alkane complex [Rh(tBu2 PCH2 CH2 CH2 PtBu2 )(η2 ,η2 -C7 H12 )][BArF 4 ] (ArF =3,5-(CF3 )2 C6 H3 ), in which the alkane (norbornane) binds through two exo-C-H⋅⋅⋅Rh interactions. In contrast, the bis-cyclohexyl phosphine analogue shows endo-alkane binding. A comparison of the two systems, supported by periodic DFT calculations, NCI plots and Hirshfeld surface analyses, traces this different regioselectivity to subtle changes in the local microenvironment surrounding the alkane ligand. A tertiary periodic structure supporting a secondary microenvironment that controls binding at the metal site has parallels with enzymes. The new σ-alkane complex is also a catalyst for solid/gas 1-butene isomerization, and catalyst resting states are identified for this.

4.
Inorg Chem ; 59(21): 15606-15619, 2020 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-33074685

RESUMO

The preparation and reactivity with H2 of two Ru complexes of the novel ZnPhos ligand (ZnPhos = Zn(o-C6H4PPh2)2) are described. Ru(ZnPhos)(CO)3 (2) and Ru(ZnPhos)(IMe4)2 (4; IMe4 = 1,3,4,5-tetramethylimidazol-2-ylidene) are formed directly from the reaction of Ru(PPh3)(C6H4PPh2)2(ZnMe)2 (1) or Ru(PPh3)3HCl/LiCH2TMS/ZnMe2 with CO and IMe4, respectively. Structural and electronic structure analyses characterize both 2 and 4 as Ru(0) species in which Ru donates to the Z-type Zn center of the ZnPhos ligand; in 2, Ru adopts an octahedral coordination, while 4 displays square-pyramidal coordination with Zn in the axial position. Under photolytic conditions, 2 loses CO to give Ru(ZnPhos)(CO)2 that then adds H2 over the Ru-Zn bond to form Ru(ZnPhos)(CO)2(µ-H)2 (3). In contrast, 4 reacts directly with H2 to set up an equilibrium with Ru(ZnPhos)(IMe4)2H2 (5), the product of oxidative addition at the Ru center. DFT calculations rationalize these different outcomes in terms of the energies of the square-pyramidal Ru(ZnPhos)L2 intermediates in which Zn sits in a basal site: for L = CO, this is readily accessed and allows H2 to add across the Ru-Zn bond, but for L = IMe4, this species is kinetically inaccessible and reaction can only occur at the Ru center. This difference is related to the strong π-acceptor ability of CO compared to IMe4. Steric effects associated with the larger IMe4 ligands are not significant. Species 4 can be considered as a Ru(0)L4 species that is stabilized by the Ru→Zn interaction. As such, it is a rare example of a stable Ru(0)L4 species devoid of strong π-acceptor ligands.

5.
J Am Chem Soc ; 141(29): 11700-11712, 2019 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-31246012

RESUMO

The non-oxidative catalytic dehydrogenation of light alkanes via C-H activation is a highly endothermic process that generally requires high temperatures and/or a sacrificial hydrogen acceptor to overcome unfavorable thermodynamics. This is complicated by alkanes being such poor ligands, meaning that binding at metal centers prior to C-H activation is disfavored. We demonstrate that by biasing the pre-equilibrium of alkane binding, by using solid-state molecular organometallic chemistry (SMOM-chem), well-defined isobutane and cyclohexane σ-complexes, [Rh(Cy2PCH2CH2PCy2)(η:η-(H3C)CH(CH3)2][BArF4] and [Rh(Cy2PCH2CH2PCy2)(η:η-C6H12)][BArF4] can be prepared by simple hydrogenation in a solid/gas single-crystal to single-crystal transformation of precursor alkene complexes. Solid-gas H/D exchange with D2 occurs at all C-H bonds in both alkane complexes, pointing to a variety of low energy fluxional processes that occur for the bound alkane ligands in the solid-state. These are probed by variable temperature solid-state nuclear magnetic resonance experiments and periodic density functional theory (DFT) calculations. These alkane σ-complexes undergo spontaneous acceptorless dehydrogenation at 298 K to reform the corresponding isobutene and cyclohexadiene complexes, by simple application of vacuum or Ar-flow to remove H2. These processes can be followed temporally, and modeled using classical chemical, or Johnson-Mehl-Avrami-Kologoromov, kinetics. When per-deuteration is coupled with dehydrogenation of cyclohexane to cyclohexadiene, this allows for two successive KIEs to be determined [kH/kD = 3.6(5) and 10.8(6)], showing that the rate-determining steps involve C-H activation. Periodic DFT calculations predict overall barriers of 20.6 and 24.4 kcal/mol for the two dehydrogenation steps, in good agreement with the values determined experimentally. The calculations also identify significant C-H bond elongation in both rate-limiting transition states and suggest that the large kH/kD for the second dehydrogenation results from a pre-equilibrium involving C-H oxidative cleavage and a subsequent rate-limiting ß-H transfer step.

6.
Dalton Trans ; 51(9): 3661-3665, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35156982

RESUMO

Microcrystalline (∼1 µm) [Rh(Cy2PCH2CH2PCy2)(norbornadiene)][S-BArF4], [S-BArF4] = [B(3,5-(SF5)2C6H3)4]-, reacts with H2 in a single-crystal to single-crystal transformation to form the σ-alkane complex [Rh(Cy2PCH2CH2PCy2)(norbornane)][S-BArF4], for which the structure was determined by microcrystal Electron Diffraction (microED), to 0.95 Å resolution, via an on-grid hydrogenation, and a complementary single-crystal X-ray diffraction study on larger, but challenging to isolate, crystals. Comparison with the [BArF4]- analogue [ArF = 3,5-(CF3)2(C6H3)] shows that the [S-BArF4]- anion makes the σ-alkane complex robust towards decomposition both thermally and when suspended in pentane. Subsequent reactivity with dissolved ethene in a pentane slurry, forms [Rh(Cy2PCH2CH2PCy2)(ethene)2][S-BArF4], and the catalytic dimerisation/isomerisation of ethene to 2-butenes. The increased stability of [S-BArF4]- salts is identified as being due to increased non-covalent interactions in the lattice, resulting in a solid-state molecular organometallic material with desirable stability characteristics.

7.
Organometallics ; 41(22): 3270-3280, 2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36466791

RESUMO

The reactivity of the Ir(I) PONOP pincer complex [Ir(iPr-PONOP)(η2-propene)][BArF 4], 6, [iPr-PONOP = 2,6-(iPr2PO)2C6H3N, ArF = 3,5-(CF3)2C6H3] was studied in solution and the solid state, both experimentally, using molecular density functional theory (DFT) and periodic-DFT computational methods, as well as in situ single-crystal to single-crystal (SC-SC) techniques. Complex 6 is synthesized in solution from sequential addition of H2 and propene, and then the application of vacuum, to [Ir(iPr-PONOP)(η2-COD)][BArF 4], 1, a reaction manifold that proceeds via the Ir(III) dihydrogen/dihydride complex [Ir(iPr-PONOP)(H2)H2][BArF 4], 2, and the Ir(III) dihydride propene complex [Ir(iPr-PONOP)(η2-propene)H2][BArF 4], 7, respectively. In solution (CD2Cl2) 6 undergoes rapid reaction with H2 to form dihydride 7 and then a slow (3 d) onward reaction to give dihydrogen/dihydride 2 and propane. DFT calculations on the molecular cation in solution support this slow, but productive, reaction, with a calculated barrier to rate-limiting propene migratory insertion of 24.8 kcal/mol. In the solid state single-crystals of 6 also form complex 7 on addition of H2 in an SC-SC reaction, but unlike in solution the onward reaction (i.e., insertion) does not occur, as confirmed by labeling studies using D2. The solid-state structure of 7 reveals that, on addition of H2 to 6, the PONOP ligand moves by 90° within a cavity of [BArF 4]- anions rather than the alkene moving. Periodic DFT calculations support the higher barrier to insertion in the solid state (ΔG ‡ = 26.0 kcal/mol), demonstrating that the single-crystal environment gates onward reactivity compared to solution. H2 addition to 6 to form 7 is reversible in both solution and the solid state, but in the latter crystallinity is lost. A rare example of a sigma amine-borane pincer complex, [Ir(iPr-PONOP)H2(η1-H3B·NMe3)][BArF 4], 5, is also reported as part of these studies.

8.
Chem Sci ; 12(25): 8832-8843, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34257884

RESUMO

The synthesis of new Schrock-Osborn Rh(i) pre-catalysts with ortho-substituted DPEphos ligands, [Rh(DPEphos-R)(NBD)][BArF 4] [R = Me, OMe, iPr; ArF = 3,5-(CF3)2C6H3], is described. Along with the previously reported R = H variant, variable temperature 1H NMR spectroscopic and single-crystal X-ray diffraction studies show that these all have axial (C-H)⋯Rh anagostic interactions relative to the d8 pseudo square planar metal centres, that also result in corresponding downfield chemical shifts. Analysis by NBO, QTAIM and NCI methods shows these to be only very weak C-H⋯Rh bonding interactions, the magnitudes of which do not correlate with the observed chemical shifts. Instead, as informed by Scherer's approach, it is the topological positioning of the C-H bond with regard to the metal centre that is important. For [Rh(DPEphos-iPr)(NBD)][BArF 4] addition of H2 results in a Rh(iii) iPr-C-H activated product, [Rh(κ3,σ-P,O,P-DPEphos-iPr')(H)][BArF 4]. This undergoes H/D exchange with D2 at the iPr groups, reacts with CO or NBD to return Rh(i) products, and reaction with H3B·NMe3/tert-butylethene results in a dehydrogenative borylation to form a complex that shows both a non-classical B-H⋯Rh 3c-2e agostic bond and a C-H⋯Rh anagostic interaction at the same metal centre.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA