Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(49): e2117562119, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36459644

RESUMO

Coral reefs are experiencing severe decline, and urgent action is required at local and global scales to curb ecosystem loss. Establishing new regulations to protect corals, however, can be time consuming and costly, and it is therefore necessary to leverage existing legal instruments, such as policies originally designed to address terrestrial rather than marine activities, to prevent coral reef degradation. Focusing on the United States, but drawing on successful examples worldwide, we present actionable pathways to increase coral protections under legislation that was originally designed to advance clean freshwater, safe drinking water, and emergency management. We identify specific legal policies and procedures (e.g., industrial permit limits, nonpoint source management incentives, and floodplain restoration programs) that can curb coral reef pollution and can be extended to other countries with similar regulations in place. Coral reef practitioners should consider a broad array of currently underused, actionable, and intersecting environmental policies that can be applied to mitigate coral stress.


Assuntos
Antozoários , Recifes de Corais , Animais , Ecossistema , Políticas , Política Ambiental
2.
J Invertebr Pathol ; 140: 51-57, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27555383

RESUMO

Diseases have caused significant reductions in coral populations throughout the global ocean. Despite a substantial effort to thoroughly characterize the epizootiology and etiology of coral diseases, little is known about the distribution and spatial clustering of disease lesions on affected coral colonies. This study investigated spatial clustering of the coral disease, growth anomaly (GA), which exhibits high levels of prevalence and severity in Montipora capitata and other corals at Wai'opae, southeast Hawai'i Island. Like many other coral diseases, the patterns of disease spread and transmissibility of GA remains unknown. We utilized cutting-edge 3D reconstruction techniques to map the precise spatial distribution of GAs on affected coral colonies. Three statistical measures, Ripley's K, Moran's I, and the Kolmogorov-Smirnov test were used to determine if the GA lesions were distributed in a non-random pattern. Each measure showed the GA lesions exhibited distinct spatial clustering on all ten affected colonies analyzed in this study. Our study is not only the first 3D analysis of intra-colony disease clustering, but also provides a novel approach for investigating and quantifying levels of disease clustering in order to improve our understanding of coral disease epizootiology, transmission, and etiology.


Assuntos
Antozoários/crescimento & desenvolvimento , Imageamento Tridimensional/métodos , Animais
3.
Sci Rep ; 13(1): 11095, 2023 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-37422484

RESUMO

Scleractinian corals are primary contributors to the structural complexity of coral reef ecosystems. The structure derived from their carbonate skeletons underpins the biodiversity and myriad of ecosystem services provided by coral reefs. This study used a trait-based approach to provide new insights into the relationships between habitat complexity and coral morphology. Three-Dimensional (3D) photogrammetry techniques were used to survey 208 study plots on the island of Guam, from which structural complexity metrics were derived and physical traits of corals were quantified. Three traits at the individual colony level (e.g., morphology, size, and genera) and two site-level environmental characteristics (e.g., wave exposure and substratum-habitat type) were examined. Standard taxonomy-based metrics were also included at the reef-plot level (e.g., coral abundance, richness, and diversity). Different traits disproportionately contributed to 3D metrics of habitat complexity. Larger colonies with a columnar morphology have the highest contribution to surface complexity, slope, and vector ruggedness measure, whereas branching and encrusting columnar colonies have the highest contribution to planform and profile curvature. These results highlight the importance of considering colony morphology and size in addition to conventional taxonomic metrics for the understanding and monitoring reef structural complexity. The approach presented here provides a framework for studies in other locations to predict the trajectory of reefs under changing environmental conditions.


Assuntos
Antozoários , Recifes de Corais , Animais , Ecossistema , Guam , Biodiversidade
4.
Sci Rep ; 11(1): 12050, 2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34103641

RESUMO

Extreme disturbances such as hurricanes can cause reductions in coral cover and three-dimensional (3D) structural complexity of coral reefs. We examined changes in structural complexity utilizing 3D reconstruction of a coral-reef site before and after Hurricane Walaka passed through Lalo of the Northwestern Hawaiian Islands. This event resulted in complete destruction of the coral-reef habitat, with dramatic changes in benthic cover from pre-hurricane tabulate coral to post-hurricane rubble. Rugosity and mean slope decreased after the hurricane, while structural complexity, captured by vector ruggedness measure (VRM), showed resolution-specific responses. This metric captured the structural complexity of rubble at a high raster resolution of 1 cm and that of tabulate coral at lower resolutions, resulting in decreases in mean VRM values at 2- and 4-cm resolutions but an increase at 1-cm resolution. Variability in profile and planform curvature was reduced after the hurricane due to a disappearance of extreme curvature values created by the tabulate coral after the hurricane. This study highlights the varying responses of habitat complexity metrics to the complete destruction of a coral reef and provides us with insights into how choices of habitat complexity metrics can affect quantitative assessments of 3D habitat structure.

5.
Sci Rep ; 9(1): 2512, 2019 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-30792432

RESUMO

Structural complexity underpins the ecological functioning of coral reefs. However, rising ocean temperatures and associated coral bleaching threaten the structural integrity of these important ecosystems. Despite the increased frequency of coral bleaching events, few studies to date have examined changes in three-dimensional (3D) reef structural complexity following severe bleaching. The influence of local stressors on reef complexity also remains poorly understood. In the wake of the 2015-2016 El Niño-induced mass coral bleaching event, we quantified the effects of severe heat stress on 3D reef structural complexity across a gradient of local human disturbance. Using Structure-from-Motion photogrammetry we created 3D reconstructions of permanent reef plots and observed substantial declines in reef structural complexity, measured as surface rugosity and terrain ruggedness, and a detectable loss of habitat volume one year after the bleaching event. 3D reef complexity also declined with increasing levels of human disturbance, and with decreasing densities of branching and massive corals. These findings improve our understanding of the effects of local and global stressors on the structural foundation of coral reef ecosystems. In the face of accelerating climate change, mitigating local stressors may increase reef structural complexity, thereby heightening reef resilience to future bleaching events.


Assuntos
Antozoários/química , Ecossistema , Água do Mar/química , Simbiose/fisiologia , Animais , Antozoários/fisiologia , Mudança Climática , Recifes de Corais , El Niño Oscilação Sul/efeitos adversos , Peixes/metabolismo , Humanos , Dinâmica Populacional , Temperatura
6.
PLoS One ; 12(9): e0185121, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28953909

RESUMO

2014 marked the sixth and most widespread mass bleaching event reported in the Northwestern Hawaiian Islands, home to the Papahanaumokuakea Marine National Monument (PMNM), the world's second largest marine reserve. This event was associated with an unusual basin-scale warming in the North Pacific Ocean, with an unprecedented peak intensity of around 20°C-weeks of cumulative heat stress at Lisianksi Island. In situ bleaching surveys and satellite data were used to evaluate the relative importance of potential drivers of bleaching patterns in 2014, assess the subsequent morality and its effects on coral communities and 3D complexity, test for signs of regional acclimation, and investigate long-term change in heat stress in PMNM. Surveys conducted at four island/atoll (French Frigate Shoals, Lisianski Island, Pearl and Hermes Atoll, and Midway Atoll) showed that in 2014, percent bleaching varied considerably between islands/atolls and habitats (back reef/fore reef and depth), and was up to 91% in shallow habitats at Lisianski. The percent bleaching during the 2014 event was best explained by a combination of duration of heat stress measured by Coral Reef Watch's satellite Degree Heating Week, relative community susceptibility (bleaching susceptibility score of each taxon * the taxon's abundance relative to the total number of colonies), depth and region. Mean coral cover at permanent Lisianski monitoring sites decreased by 68% due to severe losses of Montipora dilatata complex, resulting in rapid reductions in habitat complexity. Spatial distribution of the 2014 bleaching was significantly different from the 2002 and 2004 bleaching events likely due to a combination of differences in heat stress and local acclimatization. Historical satellite data demonstrated heat stress in 2014 was unlike any previous event and that the exposure of corals to the bleaching-level heat stress has increased significantly in the northern PMNM since 1982, highlighting the increasing threat of climate change to reefs.


Assuntos
Antozoários , Conservação dos Recursos Naturais , Resposta ao Choque Térmico , Ilhas , Oceano Pacífico , Animais , Antozoários/fisiologia , Mudança Climática , Recifes de Corais , Havaí
7.
Data Brief ; 9: 460-462, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27713918

RESUMO

Ten annotated 3D reconstructions of Montipora capitata coral colonies contain x,y,z coordinates for all growth anomaly (GA) lesions affecting these corals. The 3D reconstructions are available as Virtual Reality Modeling Language (VRML) files, and the GA lesions coordinates are in accompanying text files. The VRML models and GA lesion coordinates can be spatially analyzed using Matlab. Matlab scripts are provided for three spatial statistical procedures in order to assess clustering of the GA lesions across the coral colony surfaces in a 3D framework: Ripley׳s K, Moran׳s I, and the Kolmogorov-Smirnov test. Please see the research article, "Investigating the spatial distribution of Growth Anomalies affecting Montipora capitata corals in a 3-dimensional framework" (J.H.R. Burns, T. Alexandrov, E. Ovchinnikova, R.D. Gates, M. Takabayashi, 2016) [1], for further interpretation and discussion of the data.

8.
Data Brief ; 8: 1054-8, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27508264

RESUMO

The Hawai'i Coral Disease database (HICORDIS) houses data on colony-level coral health condition observed across the Hawaiian archipelago, providing information to conduct future analyses on coral reef health in an era of changing environmental conditions. Colonies were identified to the lowest taxonomic classification possible (species or genera), measured and assessed for visual signs of health condition. Data were recorded for 286,071 coral colonies surveyed on 1819 transects at 660 sites between 2005 and 2015. The database contains observations for 60 species from 22 genera with 21 different health conditions. The goals of the HICORDIS database are to: i) provide open access, quality controlled and validated coral health data assembled from disparate surveys conducted across Hawai'i; ii) facilitate appropriate crediting of data; and iii) encourage future analyses of coral reef health. In this article, we describe and provide data from the HICORDIS database. The data presented in this paper were used in the research article "Satellite SST-based Coral Disease Outbreak Predictions for the Hawaiian Archipelago" (Caldwell et al., 2016) [1].

9.
PLoS One ; 6(12): e28854, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22205976

RESUMO

Growth anomalies (GAs) affect the coral, Montipora capitata, at Wai'opae, southeast Hawai'i Island. Our histopathological analysis of this disease revealed that the GA tissue undergoes changes which compromise anatomical machinery for biological functions such as defense, feeding, digestion, and reproduction. GA tissue exhibited significant reductions in density of ova (66.1-93.7%), symbiotic dinoflagellates (38.8-67.5%), mesenterial filaments (11.2-29.0%), and nematocytes (28.8-46.0%). Hyperplasia of the basal body wall but no abnormal levels of necrosis and algal or fungal invasion was found in GA tissue. Skeletal density along the basal body wall was significantly reduced in GAs compared to healthy or unaffected sections. The reductions in density of the above histological features in GA tissue were collated with disease severity data to quantify the impact of this disease at the colony and population level. Resulting calculations showed this disease reduces the fecundity of M. capitata colonies at Wai'opae by 0.7-49.6%, depending on GA severity, and the overall population fecundity by 2.41±0.29%. In sum, GA in this M. capitata population reduces the coral's critical biological functions and increases susceptibility to erosion, clearly defining itself as a disease and an ecological threat.


Assuntos
Antozoários/crescimento & desenvolvimento , Animais , Antozoários/citologia , Conservação dos Recursos Naturais , Densidade Demográfica , Tomografia Computadorizada por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA