Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Plant J ; 117(5): 1543-1557, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38100514

RESUMO

Mutant populations are crucial for functional genomics and discovering novel traits for crop breeding. Sorghum, a drought and heat-tolerant C4 species, requires a vast, large-scale, annotated, and sequenced mutant resource to enhance crop improvement through functional genomics research. Here, we report a sorghum large-scale sequenced mutant population with 9.5 million ethyl methane sulfonate (EMS)-induced mutations that covered 98% of sorghum's annotated genes using inbred line BTx623. Remarkably, a total of 610 320 mutations within the promoter and enhancer regions of 18 000 and 11 790 genes, respectively, can be leveraged for novel research of cis-regulatory elements. A comparison of the distribution of mutations in the large-scale mutant library and sorghum association panel (SAP) provides insights into the influence of selection. EMS-induced mutations appeared to be random across different regions of the genome without significant enrichment in different sections of a gene, including the 5' UTR, gene body, and 3'-UTR. In contrast, there were low variation density in the coding and UTR regions in the SAP. Based on the Ka /Ks value, the mutant library (~1) experienced little selection, unlike the SAP (0.40), which has been strongly selected through breeding. All mutation data are publicly searchable through SorbMutDB (https://www.depts.ttu.edu/igcast/sorbmutdb.php) and SorghumBase (https://sorghumbase.org/). This current large-scale sequence-indexed sorghum mutant population is a crucial resource that enriched the sorghum gene pool with novel diversity and a highly valuable tool for the Poaceae family, that will advance plant biology research and crop breeding.


Assuntos
Sorghum , Sorghum/genética , Genética Reversa , Melhoramento Vegetal , Mutação , Fenótipo , Grão Comestível/genética , Metanossulfonato de Etila/farmacologia , Genoma de Planta/genética
2.
Planta ; 255(2): 35, 2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35015132

RESUMO

MAIN CONCLUSION: SorghumBase provides a community portal that integrates genetic, genomic, and breeding resources for sorghum germplasm improvement. Public research and development in agriculture rely on proper data and resource sharing within stakeholder communities. For plant breeders, agronomists, molecular biologists, geneticists, and bioinformaticians, centralizing desirable data into a user-friendly hub for crop systems is essential for successful collaborations and breakthroughs in germplasm development. Here, we present the SorghumBase web portal ( https://www.sorghumbase.org ), a resource for the sorghum research community. SorghumBase hosts a wide range of sorghum genomic information in a modular framework, built with open-source software, to provide a sustainable platform. This initial release of SorghumBase includes: (1) five sorghum reference genome assemblies in a pan-genome browser; (2) genetic variant information for natural diversity panels and ethyl methanesulfonate (EMS)-induced mutant populations; (3) search interface and integrated views of various data types; (4) links supporting interconnectivity with other repositories including genebank, QTL, and gene expression databases; and (5) a content management system to support access to community news and training materials. SorghumBase offers sorghum investigators improved data collation and access that will facilitate the growth of a robust research community to support genomics-assisted breeding.


Assuntos
Sorghum , Bases de Dados Genéticas , Grão Comestível , Genoma de Planta/genética , Genômica , Internet , Melhoramento Vegetal , Sorghum/genética
3.
Plant Cell ; 28(7): 1551-62, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27354556

RESUMO

Sorghum (Sorghum bicolor) is a versatile C4 crop and a model for research in family Poaceae. High-quality genome sequence is available for the elite inbred line BTx623, but functional validation of genes remains challenging due to the limited genomic and germplasm resources available for comprehensive analysis of induced mutations. In this study, we generated 6400 pedigreed M4 mutant pools from EMS-mutagenized BTx623 seeds through single-seed descent. Whole-genome sequencing of 256 phenotyped mutant lines revealed >1.8 million canonical EMS-induced mutations, affecting >95% of genes in the sorghum genome. The vast majority (97.5%) of the induced mutations were distinct from natural variations. To demonstrate the utility of the sequenced sorghum mutant resource, we performed reverse genetics to identify eight genes potentially affecting drought tolerance, three of which had allelic mutations and two of which exhibited exact cosegregation with the phenotype of interest. Our results establish that a large-scale resource of sequenced pedigreed mutants provides an efficient platform for functional validation of genes in sorghum, thereby accelerating sorghum breeding. Moreover, findings made in sorghum could be readily translated to other members of the Poaceae via integrated genomics approaches.


Assuntos
Sorghum/genética , Genoma de Planta/genética , Genótipo , Mutação/genética , Fenótipo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/fisiologia , Poaceae/genética , Poaceae/fisiologia , Sorghum/fisiologia
4.
Int J Mol Sci ; 20(21)2019 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-31661847

RESUMO

Grain number per panicle is an important component of grain yield in sorghum (Sorghum bicolor (L.)) and other cereal crops. Previously, we reported that mutations in multi-seeded 1 (MSD1) and MSD2 genes result in a two-fold increase in grain number per panicle due to the restoration of the fertility of the pedicellate spikelets, which invariably abort in natural sorghum accessions. Here, we report the identification of another gene, MSD3, which is also involved in the regulation of grain numbers in sorghum. Four bulked F2 populations from crosses between BTx623 and each of the independent msd mutants p6, p14, p21, and p24 were sequenced to 20× coverage of the whole genome on a HiSeq 2000 system. Bioinformatic analyses of the sequence data showed that one gene, Sorbi_3001G407600, harbored homozygous mutations in all four populations. This gene encodes a plastidial ω-3 fatty acid desaturase that catalyzes the conversion of linoleic acid (18:2) to linolenic acid (18:3), a substrate for jasmonic acid (JA) biosynthesis. The msd3 mutants had reduced levels of linolenic acid in both leaves and developing panicles that in turn decreased the levels of JA. Furthermore, the msd3 panicle phenotype was reversed by treatment with methyl-JA (MeJA). Our characterization of MSD1, MSD2, and now MSD3 demonstrates that JA-regulated processes are critical to the msd phenotype. The identification of the MSD3 gene reveals a new target that could be manipulated to increase grain number per panicle in sorghum, and potentially other cereal crops, through the genomic editing of MSD3 functional orthologs.


Assuntos
Produtos Agrícolas/enzimologia , Ciclopentanos/metabolismo , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/metabolismo , Oxilipinas/metabolismo , Sorghum/enzimologia , Alelos , Produtos Agrícolas/efeitos dos fármacos , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Ciclopentanos/farmacologia , Grão Comestível/efeitos dos fármacos , Grão Comestível/genética , Grão Comestível/crescimento & desenvolvimento , Sequenciamento de Nucleotídeos em Larga Escala , Ácido Linoleico/química , Ácido Linoleico/metabolismo , Mutação , Oxilipinas/farmacologia , Fenótipo , Sementes/efeitos dos fármacos , Sementes/genética , Sementes/crescimento & desenvolvimento , Sorghum/genética , Sorghum/metabolismo , Ácido alfa-Linolênico/biossíntese , Ácido alfa-Linolênico/química
5.
Int J Mol Sci ; 20(19)2019 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-31597271

RESUMO

As in other cereal crops, the panicles of sorghum (Sorghum bicolor (L.) Moench) comprise two types of floral spikelets (grass flowers). Only sessile spikelets (SSs) are capable of producing viable grains, whereas pedicellate spikelets (PSs) cease development after initiation and eventually abort. Consequently, grain number per panicle (GNP) is lower than the total number of flowers produced per panicle. The mechanism underlying this differential fertility is not well understood. To investigate this issue, we isolated a series of ethyl methane sulfonate (EMS)-induced multiseeded (msd) mutants that result in full spikelet fertility, effectively doubling GNP. Previously, we showed that MSD1 is a TCP (Teosinte branched/Cycloidea/PCF) transcription factor that regulates jasmonic acid (JA) biosynthesis, and ultimately floral sex organ development. Here, we show that MSD2 encodes a lipoxygenase (LOX) that catalyzes the first committed step of JA biosynthesis. Further, we demonstrate that MSD1 binds to the promoters of MSD2 and other JA pathway genes. Together, these results show that a JA-induced module regulates sorghum panicle development and spikelet fertility. The findings advance our understanding of inflorescence development and could lead to new strategies for increasing GNP and grain yield in sorghum and other cereal crops.


Assuntos
Ciclopentanos/metabolismo , Fertilidade , Oxilipinas/metabolismo , Desenvolvimento Vegetal , Sorghum/fisiologia , Sequência de Aminoácidos , Sítios de Ligação , Grão Comestível , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Redes e Vias Metabólicas , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Sorghum/classificação , Fatores de Transcrição/metabolismo
6.
BMC Plant Biol ; 17(1): 12, 2017 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-28086798

RESUMO

BACKGROUND: Climate variability due to fluctuation in temperature is a worldwide concern that imperils crop production. The need to understand how the germplasm variation in major crops can be utilized to aid in discovering and developing breeding lines that can withstand and adapt to temperature fluctuations is more necessary than ever. Here, we analyzed the genetic variation associated with responses to thermal stresses in a sorghum association panel (SAP) representing major races and working groups to identify single nucleotide polymorphisms (SNPs) that are associated with resilience to temperature stress in a major cereal crop. RESULTS: The SAP exhibited extensive variation for seedling traits under cold and heat stress. Genome-wide analyses identified 30 SNPs that were strongly associated with traits measured at seedling stage under cold stress and tagged genes that act as regulators of anthocyanin expression and soluble carbohydrate metabolism. Meanwhile, 12 SNPs were significantly associated with seedling traits under heat stress and these SNPs tagged genes that function in sugar metabolism, and ion transport pathways. Evaluation of co-expression networks for genes near the significantly associated SNPs indicated complex gene interactions for cold and heat stresses in sorghum. We focused and validated the expression of four genes in the network of Sb06g025040, a basic-helix-loop-helix (bHLH) transcription factor that was proposed to be involved in purple color pigmentation of leaf, and observed that genes in this network were upregulated during cold stress in a moderately tolerant line as compared to the more sensitive line. CONCLUSION: This study facilitated the tagging of genome regions associated with variation in seedling traits of sorghum under cold and heat stress. These findings show the potential of genotype information for development of temperature resilient sorghum cultivars and further characterization of genes and their networks responsible for adaptation to thermal stresses. Knowledge on the gene networks from this research can be extended to the other cereal crops to better understand the genetic basis of resilience to temperature fluctuations during plant developmental stages.


Assuntos
Resposta ao Choque Térmico , Sementes/fisiologia , Sorghum/genética , Sorghum/fisiologia , Redes Reguladoras de Genes , Genes de Plantas , Variação Genética , Estudo de Associação Genômica Ampla , Genótipo , Fenótipo , Polimorfismo de Nucleotídeo Único , Plântula/genética , Sementes/genética , Termotolerância/genética
7.
BMC Genomics ; 16: 1040, 2015 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-26645959

RESUMO

BACKGROUND: Sorghum is a versatile cereal crop, with excellent heat and drought tolerance. However, it is susceptible to early-season cold stress (12-15 °C) which limits stand-establishment and seedling growth. To gain further insights on the molecular mechanism of cold tolerance in sorghum we performed transcriptome profiling between known cold sensitive and tolerant sorghum lines using RNA sequencing technology under control and cold stress treatments. RESULTS: Here we report on the identification of differentially expressed genes (DEGs) between contrasting sorghum genotypes, HongkeZi (cold tolerant) and BTx623 (cold sensitive) under cool and control temperatures using RNAseq approach to elucidate the molecular basis of sorghum response to cold stress. Furthermore, we validated bi-allelic variants in the form of single nucleotide polymorphism (SNPs) between the cold susceptible and tolerant lines of sorghum. An analysis of transcriptome profile showed that in response to cold, a total of 1910 DEGs were detected under cold and control temperatures in both genotypes. We identified a subset of genes under cold stress for downstream analysis, including transcription factors that exhibit differential abundance between the sensitive and tolerant genotypes. We identified transcription factors including Dehydration-responsive element-binding factors, C-repeat binding factors, and Ethylene responsive transcription factors as significantly upregulated during cold stress in cold tolerant HKZ. Additionally, specific genes such as plant cytochromes, glutathione s-transferases, and heat shock proteins were found differentially regulated under cold stress between cold tolerant and susceptible genotype of sorghum. A total of 41,603 SNP were identified between the cold sensitive and tolerant genotypes with minimum read of four. Approximately 89 % of the 114 SNP sites selected for evaluation were validated using endpoint genotyping technology. CONCLUSION: A new strategy which involved an integrated analysis of differential gene expression and identification of bi-allelic single nucleotide polymorphism (SNP) was conducted to determine and analyze differentially expressed genes and variation involved in cold stress response of sorghum. The results gathered provide an insight into the complex mechanisms associated with cold response in sorghum, which involve an array of transcription factors and genes which were previously related to abiotic stress response. This study also offers resource for gene based SNP that can be applied towards targeted genomic studies of cold tolerance in sorghum and other cereal crops.


Assuntos
Temperatura Baixa , Genótipo , Polimorfismo de Nucleotídeo Único , Sorghum/genética , Estresse Fisiológico/genética , Transcriptoma , Mapeamento Cromossômico , Análise por Conglomerados , Biologia Computacional/métodos , Bases de Dados de Ácidos Nucleicos , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Anotação de Sequência Molecular , Fenótipo , Reprodutibilidade dos Testes
8.
Mol Genet Genomics ; 290(3): 1169-80, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25663138

RESUMO

Single-nucleotide polymorphisms, which can be identified in the thousands or millions from comparisons of transcriptome or genome sequences, are ideally suited for making high-resolution genetic maps, investigating population evolutionary history, and discovering marker-trait linkages. Despite significant results from their use in human genetics, progress in identification and use in plants, and particularly polyploid plants, has lagged. As part of a long-term project to identify and use SNPs suitable for these purposes in cultivated peanut, which is tetraploid, we generated transcriptome sequences of four peanut cultivars, namely OLin, New Mexico Valencia C, Tamrun OL07 and Jupiter, which represent the four major market classes of peanut grown in the world, and which are important economically to the US southwest peanut growing region. CopyDNA libraries of each genotype were used to generate 2 × 54 paired-end reads using an Illumina GAIIx sequencer. Raw reads were mapped to a custom reference consisting of Tifrunner 454 sequences plus peanut ESTs in GenBank, compromising 43,108 contigs; 263,840 SNP and indel variants were identified among four genotypes compared to the reference. A subset of 6 variants was assayed across 24 genotypes representing four market types using KASP chemistry to assess the criteria for SNP selection. Results demonstrated that transcriptome sequencing can identify SNPs usable as selectable DNA-based markers in complex polyploid species such as peanut. Criteria for effective use of SNPs as markers are discussed in this context.


Assuntos
Arachis/genética , Genoma de Planta/genética , Polimorfismo de Nucleotídeo Único/genética , Transcriptoma , Arachis/classificação , Sequência de Bases , Ligação Genética , Marcadores Genéticos/genética , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Mutação INDEL , RNA de Plantas/química , RNA de Plantas/isolamento & purificação , Análise de Sequência de DNA , Sudoeste dos Estados Unidos , Tetraploidia
9.
Plant Cell Environ ; 32(4): 380-407, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19143990

RESUMO

Peanut genotypes from the US mini-core collection were analysed for changes in leaf proteins during reproductive stage growth under water-deficit stress. One- and two-dimensional gel electrophoresis (1- and 2-DGE) was performed on soluble protein extracts of selected tolerant and susceptible genotypes. A total of 102 protein bands/spots were analysed by matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF MS) and by quadrupole time-of-flight tandem mass spectrometry (Q-TOF MS/MS) analysis. Forty-nine non-redundant proteins were identified, implicating a variety of stress response mechanisms in peanut. Lipoxygenase and 1l-myo-inositol-1-phosphate synthase, which aid in inter- and intracellular stress signalling, were more abundant in tolerant genotypes under water-deficit stress. Acetyl-CoA carboxylase, a key enzyme of lipid biosynthesis, increased in relative abundance along with a corresponding increase in epicuticular wax content in the tolerant genotype, suggesting an additional mechanism for water conservation and stress tolerance. Additionally, there was a marked decrease in the abundance of several photosynthetic proteins in the tolerant genotype, along with a concomitant decrease in net photosynthesis in response to water-deficit stress. Differential regulation of leaf proteins involved in a variety of cellular functions (e.g. cell wall strengthening, signal transduction, energy metabolism, cellular detoxification and gene regulation) indicates that these molecules could affect the molecular mechanism of water-deficit stress tolerance in peanut.


Assuntos
Arachis/fisiologia , Proteoma/metabolismo , Proteômica , Água/fisiologia , Acetil-CoA Carboxilase/metabolismo , Arachis/genética , Arachis/metabolismo , Clorofila/análise , Desidratação , Eletroforese em Gel Bidimensional , Regulação da Expressão Gênica de Plantas , Genótipo , Mio-Inositol-1-Fosfato Sintase/metabolismo , Fotossíntese , Proteínas de Plantas/metabolismo , Transpiração Vegetal , Proteoma/genética , RNA de Plantas/genética , Estresse Fisiológico , Espectrometria de Massas em Tandem
10.
Methods Mol Biol ; 1931: 75-84, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30652284

RESUMO

Marker assisted selection (MAS), an advance tool in plant breeding that allows accurate and efficient introgression of important agronomic trait(s) from a germplasm source to desired elite lines, has been applied to sorghum recently. Here, we report the methods for the deployment of MAS for trait introgression using endpoint genotyping technology for single nucleotide polymorphism (SNP)/insertion deletion (InDel) coupled with an application of KASP (Kompetitive Allele Specific Polymerase Chain Reaction [PCR]) chemistry allowing for the selection of parents for generational advancement without going through the laborious and time consuming phenotypic selection and additional generations for selection of desired individuals. This MAS-SNP marker assisted backcrossing scheme can be applied to accurately select heterozygotes for use as an allele donor parent in each backcross generation, thus expediting the backcrossing scheme and resulting in time savings of 3 years compared to conventional methods of introgression practiced in sorghum breeding and improvement.


Assuntos
Marcadores Genéticos/genética , Mutação INDEL/genética , Polimorfismo de Nucleotídeo Único/genética , Sorghum/genética , Alelos , Edição de Genes/métodos , Genótipo , Fenótipo , Melhoramento Vegetal/métodos , Locos de Características Quantitativas/genética
11.
G3 (Bethesda) ; 9(12): 4045-4057, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31611346

RESUMO

Dissecting the genetic architecture of stress tolerance in crops is critical to understand and improve adaptation. In temperate climates, early planting of chilling-tolerant varieties could provide longer growing seasons and drought escape, but chilling tolerance (<15°) is generally lacking in tropical-origin crops. Here we developed a nested association mapping (NAM) population to dissect the genetic architecture of early-season chilling tolerance in the tropical-origin cereal sorghum (Sorghum bicolor [L.] Moench). The NAM resource, developed from reference line BTx623 and three chilling-tolerant Chinese lines, is comprised of 771 recombinant inbred lines genotyped by sequencing at 43,320 single nucleotide polymorphisms. We phenotyped the NAM population for emergence, seedling vigor, and agronomic traits (>75,000 data points from ∼16,000 plots) in multi-environment field trials in Kansas under natural chilling stress (sown 30-45 days early) and normal growing conditions. Joint linkage mapping with early-planted field phenotypes revealed an oligogenic architecture, with 5-10 chilling tolerance loci explaining 20-41% of variation. Surprisingly, several of the major chilling tolerance loci co-localize precisely with the classical grain tannin (Tan1 and Tan2) and dwarfing genes (Dw1 and Dw3) that were under strong directional selection in the US during the 20th century. These findings suggest that chilling sensitivity was inadvertently selected due to coinheritance with desired nontannin and dwarfing alleles. The characterization of genetic architecture with NAM reveals why past chilling tolerance breeding was stymied and provides a path for genomics-enabled breeding of chilling tolerance.


Assuntos
Adaptação Fisiológica/genética , Mapeamento Cromossômico , Temperatura Baixa , Sorghum/genética , Sorghum/fisiologia , Evolução Biológica , Padrões de Herança/genética , Fenótipo , Característica Quantitativa Herdável , Estações do Ano , Sementes/metabolismo , Taninos/metabolismo
12.
BMC Plant Biol ; 8: 103, 2008 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-18854043

RESUMO

BACKGROUND: Sorghum [Sorghum bicolor (L.) Moench] is ranked as the fifth most important grain crop and serves as a major food staple and fodder resource for much of the world, especially in arid and semi-arid regions. The recent surge in sorghum research is driven by its tolerance to drought/heat stresses and its strong potential as a bioenergy feedstock. Completion of the sorghum genome sequence has opened new avenues for sorghum functional genomics. However, the availability of genetic resources, specifically mutant lines, is limited. Chemical mutagenesis of sorghum germplasm, followed by screening for mutants altered in important agronomic traits, represents a rapid and effective means of addressing this limitation. Induced mutations in novel genes of interest can be efficiently assessed using the technique known as Targeting Induced Local Lesion IN Genomes (TILLING). RESULTS: A sorghum mutant population consisting of 1,600 lines was generated from the inbred line BTx623 by treatment with the chemical agent ethyl methanesulfonate (EMS). Numerous phenotypes with altered morphological and agronomic traits were observed from M2 and M3 lines in the field. A subset of 768 mutant lines was analyzed by TILLING using four target genes. A total of five mutations were identified resulting in a calculated mutation density of 1/526 kb. Two of the mutations identified by TILLING and verified by sequencing were detected in the gene encoding caffeic acid O-methyltransferase (COMT) in two independent mutant lines. The two mutant lines segregated for the expected brown midrib (bmr) phenotype, a trait associated with altered lignin content and increased digestibility. CONCLUSION: TILLING as a reverse genetic approach has been successfully applied to sorghum. The diversity of the mutant phenotypes observed in the field, and the density of induced mutations calculated from TILLING indicate that this mutant population represents a useful resource for members of the sorghum research community. Moreover, TILLING has been demonstrated to be applicable for sorghum functional genomics by evaluating a small subset of the EMS-induced mutant lines.


Assuntos
Genoma de Planta , Mutação , Fenótipo , Sorghum/genética , DNA de Plantas/genética , Metanossulfonato de Etila/farmacologia , Genes de Plantas , Genótipo , Mutagênese , Mutagênicos/farmacologia , Característica Quantitativa Herdável , Alinhamento de Sequência , Análise de Sequência de DNA , Sorghum/efeitos dos fármacos
13.
Nat Commun ; 9(1): 822, 2018 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-29483511

RESUMO

Grain number per panicle (GNP) is a major determinant of grain yield in cereals. However, the mechanisms that regulate GNP remain unclear. To address this issue, we isolate a series of sorghum [Sorghum bicolor (L.) Moench] multiseeded (msd) mutants that can double GNP by increasing panicle size and altering floral development so that all spikelets are fertile and set grain. Through bulk segregant analysis by next-generation sequencing, we identify MSD1 as a TCP (Teosinte branched/Cycloidea/PCF) transcription factor. Whole-genome expression profiling reveals that jasmonic acid (JA) biosynthetic enzymes are transiently activated in pedicellate spikelets. Young msd1 panicles have 50% less JA than wild-type (WT) panicles, and application of exogenous JA can rescue the msd1 phenotype. Our results reveal a new mechanism for increasing GNP, with the potential to boost grain yield, and provide insight into the regulation of plant inflorescence architecture and development.


Assuntos
Ciclopentanos/farmacologia , Regulação da Expressão Gênica de Plantas , Inflorescência/efeitos dos fármacos , Oxilipinas/farmacologia , Reguladores de Crescimento de Plantas/farmacologia , Sementes/efeitos dos fármacos , Sorghum/efeitos dos fármacos , Grão Comestível , Ontologia Genética , Sequenciamento de Nucleotídeos em Larga Escala , Inflorescência/genética , Inflorescência/crescimento & desenvolvimento , Inflorescência/metabolismo , Anotação de Sequência Molecular , Reguladores de Crescimento de Plantas/genética , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sementes/genética , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Transdução de Sinais , Sorghum/genética , Sorghum/crescimento & desenvolvimento , Sorghum/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
14.
Front Plant Sci ; 8: 2267, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29379518

RESUMO

Sorghum (Sorghum bicolor Moench, L.) plant accumulates copious layers of epi-cuticular wax (EW) on its aerial surfaces, to a greater extent than most other crops. EW provides a vapor barrier that reduces water loss, and is therefore considered to be a major determinant of sorghum's drought tolerance. However, little is known about the genes responsible for wax accumulation in sorghum. We isolated two allelic mutants, bloomless40-1 (bm40-1) and bm40-2, from a mutant library constructed from ethyl methane sulfonate (EMS) treated seeds of an inbred, BTx623. Both mutants were nearly devoid of the EW layer. Each bm mutant was crossed to the un-mutated BTx623 to generated F2 populations that segregated for the bm phenotype. Genomic DNA from 20 bm F2 plants from each population was bulked for whole genome sequencing. A single gene, Sobic.001G228100, encoding a GDSL-like lipase/acylhydrolase, had unique homozygous mutations in each bulked F2 population. Mutant bm40-1 harbored a missense mutation in the gene, whereas bm40-2 had a splice donor site mutation. Our findings thus provide strong evidence that mutation in this GDSL-like lipase gene causes the bm phenotype, and further demonstrate that this approach of sequencing two independent allelic mutant populations is an efficient method for identifying causal mutations. Combined with allelic mutants, MutMap provides powerful method to identify all causal genes for the large collection of bm mutants in sorghum, which will provide insight into how sorghum plants accumulate such abundant EW on their aerial surface. This knowledge may facilitate the development of tools for engineering drought-tolerant crops with reduced water loss.

15.
Plant Genome ; 10(2)2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28724078

RESUMO

Heat stress reduces grain yield and quality worldwide. Enhancing heat tolerance of crops at all developmental stages is one of the essential strategies required for sustaining agricultural production especially as frequency of temperature extremes escalates in response to climate change. Although heat tolerance mechanisms have been studied extensively in model plant species, little is known about the genetic control underlying heat stress responses of crop plants at the vegetative stage under field conditions. To dissect the genetic basis of heat tolerance in sorghum [ (L.) Moench], we performed a genome-wide association study (GWAS) for traits responsive to heat stress at the vegetative stage in an association panel. Natural variation in leaf firing (LF) and leaf blotching (LB) were evaluated separately for 3 yr in experimental fields at three locations where sporadic heat waves occurred throughout the sorghum growing season. We identified nine single-nucleotide polymorphisms (SNPs) that were significantly associated with LF and five SNPs that were associated with LB. Candidate genes near the SNPs were investigated and 14 were directly linked to biological pathways involved in plant stress responses including heat stress response. The findings of this study provide new knowledge on the genetic control of leaf traits responsive to heat stress in sorghum, which could aid in elucidating the genetic and molecular mechanisms of vegetative stage heat tolerance in crops. The results also provide candidate markers for molecular breeding of enhanced heat tolerance in cereal and bioenergy crops.


Assuntos
Adaptação Fisiológica , Estudo de Associação Genômica Ampla , Temperatura Alta , Folhas de Planta/fisiologia , Sorghum/crescimento & desenvolvimento , Cromossomos de Plantas , Genótipo , Polimorfismo de Nucleotídeo Único , Sorghum/genética , Sorghum/fisiologia , Estresse Fisiológico
16.
G3 (Bethesda) ; 6(12): 3825-3836, 2016 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-27729436

RESUMO

To test the hypothesis that the cultivated peanut species possesses almost no molecular variability, we sequenced a diverse panel of 22 Arachis accessions representing Arachis hypogaea botanical classes, A-, B-, and K- genome diploids, a synthetic amphidiploid, and a tetraploid wild species. RNASeq was performed on pools of three tissues, and de novo assembly was performed. Realignment of individual accession reads to transcripts of the cultivar OLin identified 306,820 biallelic SNPs. Among 10 naturally occurring tetraploid accessions, 40,382 unique homozygous SNPs were identified in 14,719 contigs. In eight diploid accessions, 291,115 unique SNPs were identified in 26,320 contigs. The average SNP rate among the 10 cultivated tetraploids was 0.5, and among eight diploids was 9.2 per 1000 bp. Diversity analysis indicated grouping of diploids according to genome classification, and cultivated tetraploids by subspecies. Cluster analysis of variants indicated that sequences of B genome species were the most similar to the tetraploids, and the next closest diploid accession belonged to the A genome species. A subset of 66 SNPs selected from the dataset was validated; of 782 SNP calls, 636 (81.32%) were confirmed using an allele-specific discrimination assay. We conclude that substantial genetic variability exists among wild species. Additionally, significant but lesser variability at the molecular level occurs among accessions of the cultivated species. This survey is the first to report significant SNP level diversity among transcripts, and may explain some of the phenotypic differences observed in germplasm surveys. Understanding SNP variants in the Arachis accessions will benefit in developing markers for selection.


Assuntos
Arachis/genética , Variação Genética , Sequenciamento de Nucleotídeos em Larga Escala , Transcriptoma , Alelos , Mapeamento Cromossômico , Biologia Computacional/métodos , Evolução Molecular , Genética Populacional , Anotação de Sequência Molecular , Polimorfismo de Nucleotídeo Único , Especificidade da Espécie
17.
Plant Genome ; 8(2): eplantgenome2014.09.0048, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33228310

RESUMO

Cyanogenic glucosides are natural compounds found in more than 1000 species of angiosperms that produce HCN and are deemed undesirable for agricultural use. However, these compounds are important components of the primary defensive mechanisms of many plant species. One of the best-studied cyanogenic glucosides is dhurrin [(S)-p-hydroxymandelonitrile-ß-D-glucopyranoside], which is produced primarily in sorghum [Sorghum bicolor (L.) Moench]. The biochemical basis for dhurrin metabolism is well established; however, little information is available on its genetic control. Here, we dissect the genetic control of leaf dhurrin content through a genome-wide association study (GWAS) using a panel of 700 diverse converted sorghum lines (conversion panel) previously subjected to pre-breeding and selected for short stature (∼1 m in height) and photoperiod insensitivity. The conversion panel was grown for 2 yr in three environments. Wide variation for leaf dhurrin content was found in the sorghum conversion panel, with the Caudatum group exhibiting the highest dhurrin content and the Guinea group showing the lowest dhurrin content. A GWAS using a mixed linear model revealed significant associations (a false discovery rate [FDR] < 0.05) close to both UGT 185B1 in the canonical biosynthetic gene cluster on chromosome 1 and close to the catabolic dhurrinase loci on chromosome 8. Dhurrin content was associated consistently with biosynthetic genes in the two N-fertilized environments, while dhurrin content was associated with catabolic loci in the environment without supplemental N. These results suggest that genes for both biosynthesis and catabolism are important in determining natural variation for leaf dhurrin in sorghum in different environments.

18.
PLoS One ; 9(12): e115055, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25551607

RESUMO

The narrow genetic base and limited genetic information on Arachis species have hindered the process of marker-assisted selection of peanut cultivars. However, recent developments in sequencing technologies have expanded opportunities to exploit genetic resources, and at lower cost. To use the genetic information for Arachis species available at the transcriptome level, it is important to have a good quality reference transcriptome. The available Tifrunner 454 FLEX transcriptome sequences have an assembly with 37,000 contigs and low N50 values of 500-751 bp. Therefore, we generated de novo transcriptome assemblies, with about 38 million reads in the tetraploid cultivar OLin, and 16 million reads in each of the diploids, A. duranensis K38901 and A. ipaënsis KGBSPSc30076 using three different de novo assemblers, Trinity, SOAPdenovo-Trans and TransAByss. All these assemblers can use single kmer analysis, and the latter two also permit multiple kmer analysis. Assemblies generated for all three samples had N50 values ranging from 1278-1641 bp in Arachis hypogaea (AABB), 1401-1492 bp in Arachis duranensis (AA), and 1107-1342 bp in Arachis ipaënsis (BB). Comparison with legume ESTs and protein databases suggests that assemblies generated had more than 40% full length transcripts with good continuity. Also, on mapping the raw reads to each of the assemblies generated, Trinity had a high success rate in assembling sequences compared to both TransAByss and SOAPdenovo-Trans. De novo assembly of OLin had a greater number of contigs (67,098) and longer contig length (N50 = 1,641) compared to the Tifrunner TSA. Despite having shorter read length (2 × 50) than the Tifrunner 454FLEX TSA, de novo assembly of OLin proved superior in comparison. Assemblies generated to represent different genome combinations may serve as a valuable resource for the peanut research community.


Assuntos
Arachis/genética , Diploide , Perfilação da Expressão Gênica/métodos , Poliploidia , Análise de Sequência de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
19.
G3 (Bethesda) ; 3(1): 101-8, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23316442

RESUMO

We describe a recombinant inbred line (RIL) population of 161 F5 genotypes for the widest euploid cross that can be made to cultivated sorghum (Sorghum bicolor) using conventional techniques, S. bicolor × Sorghum propinquum, that segregates for many traits related to plant architecture, growth and development, reproduction, and life history. The genetic map of the S. bicolor × S. propinquum RILs contains 141 loci on 10 linkage groups collectively spanning 773.1 cM. Although the genetic map has DNA marker density well-suited to quantitative trait loci mapping and samples most of the genome, our previous observations that sorghum pericentromeric heterochromatin is recalcitrant to recombination is highlighted by the finding that the vast majority of recombination in sorghum is concentrated in small regions of euchromatin that are distal to most chromosomes. The advancement of the RIL population in an environment to which the S. bicolor parent was well adapted (indeed bred for) but the S. propinquum parent was not largely eliminated an allele for short-day flowering that confounded many other traits, for example, permitting us to map new quantitative trait loci for flowering that previously eluded detection. Additional recombination that has accrued in the development of this RIL population also may have improved resolution of apices of heterozygote excess, accounting for their greater abundance in the F5 than the F2 generation. The S. bicolor × S. propinquum RIL population offers advantages over early-generation populations that will shed new light on genetic, environmental, and physiological/biochemical factors that regulate plant growth and development.


Assuntos
Cruzamento/métodos , Mapeamento Cromossômico , Genótipo , Hibridização Genética , Sorghum/genética , Cruzamentos Genéticos , Repetições de Microssatélites/genética , Locos de Características Quantitativas/genética , Recombinação Genética/genética
20.
Theor Appl Genet ; 118(3): 423-31, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18985313

RESUMO

Sorghum is distinct from other cereal crops due to its ability to produce profuse amount of epicuticular wax (EW or bloom) on its culm and leaves along with less permeable cuticle which are considered to be important traits contributing to abiotic stress tolerance. Here, we report the molecular mapping and characterization of BL OO M-C UTICLE (BLMC), a locus associated with production of profuse wax, using a mutant mapping population developed from a cross between BTx623 (wild type with profuse wax) and KFS2021 (a mutant with greatly reduced wax). The F2 progenies were genotyped using known and newly developed microsatellite markers to establish a molecular map of BLMC. The locus mapped to a 3.6-centimorgans (cM) interval in the terminal end of sorghum chromosome 10 with flanking markers Xsbarslbk10.47 and Xcup42. Targeted mapping delimited BLMC to as small as 0.7 cM region and facilitated identification of three cosegregating markers with the trait. The BLMC region corresponds to approximately 153,000 bp and candidate genes identified include among others an acyl CoA oxidase (a gene involved in lipid and wax biosynthesis) and seven other putative transcripts. Phenotypic characterization showed that in addition to disrupting the EW production, BLMC mutation reduced culm and leaf cuticle, increased plant death rating in the field at anthesis and significantly reduced the C:28 to C:30 free fatty acid fractions of culm and leaf EW. These results clearly support the important role of BLMC in the expression of profuse wax and enhanced cuticular features of sorghum. Genetic mapping of BLMC opened avenues for identification of genes involved in the cuticle/wax pathway of sorghum and their application for improvement of abiotic stress tolerance.


Assuntos
Genes de Plantas , Sorghum/genética , Mapeamento Cromossômico , Cromossomos de Plantas , Mutação , Fenótipo , Análise de Sequência de DNA , Sorghum/anatomia & histologia , Sorghum/fisiologia , Ceras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA