Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mil Med ; 189(7-8): e1488-e1496, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38780999

RESUMO

INTRODUCTION: Antibacterial resistance is an emerging problem in military medicine. Disruptions to the health care systems in war-torn countries that result from ongoing conflict can potentially exacerbate this problem and increase the risk to U.S. forces in the deployed environment. Therefore, novel therapies are needed to mitigate the impact of these potentially devastating infections on military operations. Bacteriophages are viruses that infect and kill bacteria. They can be delivered as therapeutic agents and offer a promising alternative to traditional antibiotic chemotherapy. There are several potential benefits to their use, including high specificity and comparative ease of use in the field setting. However, the process of engineering phages for military medical applications can be a laborious and time-consuming endeavor. This review examines available techniques and compares their efficacy. MATERIALS AND METHODS: This review evaluates the scientific literature on the development and application of four methods of bacteriophage genome engineering and their consideration in the context of military applications. Preffered Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were followed for a systematic review of available literature that met criteria for analysis and inclusion. The research completed for this review article originated from the United States Military Academy's library "Scout" search engine, which compiles results from 254 available databases (including PubMed, Google Scholar, and SciFinder). Particular attention was focused on identifying useful mechanistic insight into the nature of the engineering technique, the ease of use, and the applicability of the technique to countering the problem of antimicrobial resistance in the military setting. RESULTS: A total of 52 studies were identified that met inclusion criteria following PRISMA guidelines. The bioengineering techniques analyzed included homologous recombination (12 articles), in vivo recombineering (9 articles), bacteriophage recombineering of electroporated DNA (7 articles), and the CRISPR-Cas system (10 articles). Rates of success and fidelity varied across each platform, and comparative benefits and drawbacks are considered. CONCLUSIONS: Each of the phage engineering techniques addressed herein varies in amount of effort and overall success rate. CRISPR-Cas-facilitated modification of phage genomes presents a highly efficient method that does not require a lengthy purification and screening process. It therefore appears to be the method best suited for military medical applications.


Assuntos
Bacteriófagos , Engenharia Genética , Bacteriófagos/genética , Humanos , Engenharia Genética/métodos , Especificidade de Hospedeiro , Terapia por Fagos/métodos
2.
Viruses ; 16(7)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-39066163

RESUMO

The Gram-negative ESKAPE bacterium Pseudomonas aeruginosa has become a pathogen of serious concern due its extensive multi-drug resistance (MDR) profile, widespread incidences of hospital-acquired infections throughout the United States, and high occurrence in wound infections suffered by warfighters serving abroad. Bacteriophage (phage) therapy has received renewed attention as an alternative therapeutic option against recalcitrant bacterial infections, both as multi-phage cocktails and in combination with antibiotics as synergistic pairings. Environmental screening and phage enrichment has yielded three lytic viruses capable of infecting the MDR P. aeruginosa strain PAO1. Co-administration of each phage with the carbapenem antibiotics ertapenem, imipenem, and meropenem generated enhanced overall killing of bacteria beyond either phage or drug treatments alone. A combination cocktail of all three phages was completely inhibitory to growth, even without antibiotics. The same 3× phage cocktail also disrupted PAO1 biofilms, reducing biomass by over 75% compared to untreated biofilms. Further, the phage cocktail demonstrated broad efficacy as well, capable of infecting 33 out of 100 diverse clinical isolate strains of P. aeruginosa. Together, these results indicate a promising approach for designing layered medical countermeasures to potentiate antibiotic activity and possibly overcome resistance against recalcitrant, MDR bacteria such as P. aeruginosa. Combination therapy, either by synergistic phage-antibiotic pairings, or by phage cocktails, presents a means of controlling mutations that can allow for bacteria to gain a competitive edge.


Assuntos
Antibacterianos , Carbapenêmicos , Farmacorresistência Bacteriana Múltipla , Terapia por Fagos , Infecções por Pseudomonas , Pseudomonas aeruginosa , Pseudomonas aeruginosa/virologia , Pseudomonas aeruginosa/efeitos dos fármacos , Carbapenêmicos/farmacologia , Antibacterianos/farmacologia , Infecções por Pseudomonas/terapia , Infecções por Pseudomonas/microbiologia , Biofilmes/efeitos dos fármacos , Bacteriófagos/fisiologia , Testes de Sensibilidade Microbiana , Humanos , Fagos de Pseudomonas/fisiologia , Imipenem/farmacologia
3.
Mil Med ; 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37847552

RESUMO

INTRODUCTION: Antibiotic-resistant bacteria are a growing threat to civilian and military health today. Although infections were once easily treatable by antibiotics and wound cleaning, the frequent mutation of bacteria has created strains impermeable to antibiotics and physical attack. Bacteria further their pathogenicity because of their ability to form biofilms on wounds, medical devices, and implant surfaces. Methods for treating biofilms in clinical settings are limited, and when formed by antibiotic-resistant bacteria, can generate chronic infections that are recalcitrant to available therapies. Bacteriophages are natural viral predators of bacteria, and their ability to rapidly destroy their host has led to increased attention in potential phage therapy applications. MATERIALS AND METHODS: The present article sought to address a knowledge gap in the available literature pertaining to the usage of bacteriophage in clinically relevant settings and the resolution of infections particular to military concerns. PRISMA guidelines were followed for a systematic review of available literature that met the criteria for analysis and inclusion. The research completed for this review article originated from the U.S. Military Academy's library "Scout" search engine, which complies results from 254 available databases (including PubMed, Google Scholar, and SciFinder). The search criteria included original studies that employed bacteriophage use against biofilms, as well as successful phage therapy strategies for combating chronic bacterial infections. We specifically explored the use of bacteriophage against antibiotic- and treatment-resistant bacteria. RESULTS: A total of 80 studies were identified that met the inclusion criteria following PRISMA guidelines. The application of bacteriophage has been demonstrated to robustly disrupt biofilm growth in wounds and on implant surfaces. When traditional therapies have failed to disrupt biofilms and chronic infections, a combination of these treatments with phage has proven to be effective, often leading to complete wound healing without reinfection. CONCLUSIONS: This review article examines the available literature where bacteriophages have been utilized to treat biofilms in clinically relevant settings. Specific attention is paid to biofilms on implant medical devices, biofilms formed on wounds, and clinical outcomes, where phage treatment has been efficacious. In addition to the clinical benefit of phage therapies, the military relevance and treatment of combat-related infections is also examined. Phages offer the ability to expand available treatment options in austere environments with relatively low cost and effort, allowing the impacted warfighter to return to duty quicker and healthier.

4.
APL Bioeng ; 7(4): 046114, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38046543

RESUMO

In tissues and organs, the extracellular matrix (ECM) helps maintain inter- and intracellular architectures that sustain the structure-function relationships defining physiological homeostasis. Combining fiber scaffolds and cells to form engineered tissues is a means of replicating these relationships. Engineered tissues' fiber scaffolds are designed to mimic the topology and chemical composition of the ECM network. Here, we asked how cells found in the heart compare in their propensity to align their cytoskeleton and self-organize in response to topological cues in fibrous scaffolds. We studied cardiomyocytes, valvular interstitial cells, and vascular endothelial cells as they adapted their inter- and intracellular architectures to the extracellular space. We used focused rotary jet spinning to manufacture aligned fibrous scaffolds to mimic the length scale and three-dimensional (3D) nature of the native ECM in the muscular, valvular, and vascular tissues of the heart. The representative cardiovascular cell types were seeded onto fiber scaffolds and infiltrated the fibrous network. We measured different cell types' propensity for cytoskeletal alignment in response to fiber scaffolds with differing levels of anisotropy. The results indicated that valvular interstitial cells on moderately anisotropic substrates have a higher propensity for cytoskeletal alignment than cardiomyocytes and vascular endothelial cells. However, all cell types displayed similar levels of alignment on more extreme (isotropic and highly anisotropic) fiber scaffold organizations. These data suggest that in the hierarchy of signals that dictate the spatiotemporal organization of a tissue, geometric cues within the ECM and cellular networks may homogenize behaviors across cell populations and demographics.

5.
Gels ; 9(11)2023 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-37998983

RESUMO

Tunable porous composite materials to control metal and metal oxide functionalization, conductivity, pore structure, electrolyte mass transport, mechanical strength, specific surface area, and magneto-responsiveness are critical for a broad range of energy storage, catalysis, and sensing applications. Biotemplated transition metal composite aerogels present a materials approach to address this need. To demonstrate a solution-based synthesis method to develop cobalt and cobalt oxide aerogels for high surface area multifunctional energy storage electrodes, carboxymethyl cellulose nanofibers (CNF) and alginate biopolymers were mixed to form hydrogels to serve as biotemplates for cobalt nanoparticle formation via the chemical reduction of cobalt salt solutions. The CNF-alginate mixture forms a physically entangled, interpenetrating hydrogel, combining the properties of both biopolymers for monolith shape and pore size control and abundant carboxyl groups that bind metal ions to facilitate biotemplating. The CNF-alginate hydrogels were equilibrated in CaCl2 and CoCl2 salt solutions for hydrogel ionic crosslinking and the prepositioning of transition metal ions, respectively. The salt equilibrated hydrogels were chemically reduced with NaBH4, rinsed, solvent exchanged in ethanol, and supercritically dried with CO2 to form aerogels with a specific surface area of 228 m2/g. The resulting aerogels were pyrolyzed in N2 gas and thermally annealed in air to form Co and Co3O4 porous composite electrodes, respectively. The multifunctional composite aerogel's mechanical, magnetic, and electrochemical functionality was characterized. The coercivity and specific magnetic saturation of the pyrolyzed aerogels were 312 Oe and 114 emu/gCo, respectively. The elastic moduli of the supercritically dried, pyrolyzed, and thermally oxidized aerogels were 0.58, 1.1, and 14.3 MPa, respectively. The electrochemical testing of the pyrolyzed and thermally oxidized aerogels in 1 M KOH resulted in specific capacitances of 650 F/g and 349 F/g, respectively. The rapidly synthesized, low-cost, hydrogel-based synthesis for tunable transition metal multifunctional composite aerogels is envisioned for a wide range of porous metal electrodes to address energy storage, catalysis, and sensing applications.

6.
J Vis Exp ; (159)2020 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-32478752

RESUMO

The synthesis of high surface area porous noble metal nanomaterials generally relies on time consuming coalescence of pre-formed nanoparticles, followed by rinsing and supercritical drying steps, often resulting in mechanically fragile materials. Here, a method to synthesize nanostructured porous platinum-based macrotubes and macrobeams with a square cross section from insoluble salt needle templates is presented. The combination of oppositely charged platinum, palladium, and copper square planar ions results in the rapid formation of insoluble salt needles. Depending on the stoichiometric ratio of metal ions present in the salt-template and the choice of chemical reducing agent, either macrotubes or macrobeams form with a porous nanostructure comprised of either fused nanoparticles or nanofibrils. Elemental composition of the macrotubes and macrobeams, determined with x-ray diffractometry and x-ray photoelectron spectroscopy, is controlled by the stoichiometric ratio of metal ions present in the salt-template. Macrotubes and macrobeams may be pressed into free standing films, and the electrochemically active surface area is determined with electrochemical impedance spectroscopy and cyclic voltammetry. This synthesis method demonstrates a simple, relatively fast approach to achieve high-surface area platinum-based macrotubes and macrobeams with tunable nanostructure and elemental composition that may be pressed into free-standing films with no required binding materials.


Assuntos
Nanoestruturas/química , Platina/química
7.
Nanoscale ; 11(3): 1091-1102, 2019 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-30574649

RESUMO

Porous metal nanofoams have made significant contributions to a diverse set of technologies from separation and filtration to aerospace. Nonetheless, finer control over nano and microscale features must be gained to reach the full potential of these materials in energy storage, catalytic, and sensing applications. As biologics naturally occur and assemble into nano and micro architectures, templating on assembled biological materials enables nanoscale architectural control without the limited chemical scope or specialized equipment inherent to alternative synthetic techniques. Here, we rationally assemble 1D biological templates into scalable, 3D structures to fabricate metal nanofoams with a variety of genetically programmable architectures and material chemistries. We demonstrate that nanofoam architecture can be modulated by manipulating viral assembly, specifically by editing the viral surface coat protein, as well as altering templating density. These architectures were retained over a broad range of compositions including monometallic and bi-metallic combinations of noble and transition metals of copper, nickel, cobalt, and gold. Phosphorous and boron incorporation was also explored. In addition to increasing the surface area over a factor of 50, as compared to the nanofoam's geometric footprint, this process also resulted in a decreased average crystal size and altered phase composition as compared to non-templated controls. Finally, templated hydrogels were deposited on the centimeter scale into an array of substrates as well as free standing foams, demonstrating the scalability and flexibility of this synthetic method towards device integration. As such, we anticipate that this method will provide a platform to better study the synergistic and de-coupled effects between nano-structure and composition for a variety of applications including energy storage, catalysis, and sensing.


Assuntos
Nanoestruturas/química , Bacteriófago M13/química , Bacteriófago M13/metabolismo , Técnicas Biossensoriais , Boro/química , Catálise , Hidrogéis/química , Metais/química , Fósforo/química , Porosidade , Sais/química
8.
Materials (Basel) ; 12(6)2019 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-30889793

RESUMO

Nobel metal composite aerogel fibers made from flexible and porous biopolymers offer a wide range of applications, such as in catalysis and sensing, by functionalizing the nanostructure. However, producing these composite aerogels in a defined shape is challenging for many protein-based biopolymers, especially ones that are not fibrous proteins. Here, we present the synthesis of silk fibroin composite aerogel fibers up to 2 cm in length and a diameter of ~300 µm decorated with noble metal nanoparticles. Lyophilized silk fibroin dissolved in hexafluoro-2-propanol (HFIP) was cast in silicon tubes and physically crosslinked with ethanol to produce porous silk gels. Composite silk aerogel fibers with noble metals were created by equilibrating the gels in noble metal salt solutions reduced with sodium borohydride, followed by supercritical drying. These porous aerogel fibers provide a platform for incorporating noble metals into silk fibroin materials, while also providing a new method to produce porous silk fibers. Noble metal silk aerogel fibers can be used for biological sensing and energy storage applications.

9.
ACS Omega ; 4(5): 8626-8631, 2019 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-31459951

RESUMO

A spoof fingerprint was fabricated on paper and applied for a spoofing attack to unlock a smartphone on which a capacitive array of sensors had been embedded with a fingerprint recognition algorithm. Using an inkjet printer with an ink made of carbon nanotubes (CNTs), we printed a spoof fingerprint having an electrical and geometric pattern of ridges and furrows comparable to that of the real fingerprint. With this printed spoof fingerprint, we were able to unlock a smartphone successfully; this was due to the good quality of the printed CNT material, which provided electrical conductivities and structural patterns similar to those of the real fingerprint. This result confirms that inkjet-printing CNTs to fabricate a spoof fingerprint on paper is an easy, simple spoofing route from the real fingerprint and suggests a new method for outputting the physical ridges and furrows on a two-dimensional plane.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA