Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Phys Rev Lett ; 120(13): 135002, 2018 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-29694164

RESUMO

A new, long-lived limit cycle oscillation (LCO) regime has been observed in the edge of near zero torque high performance DIII-D tokamak plasma discharges. These LCOs are localized and composed of density turbulence, gradient drives, and E×B velocity shear damping (E and B are the local radial electric and total magnetic fields). Density turbulence sequentially acts as a predator (via turbulence transport) of profile gradients and a prey (via shear suppression) to the E×B velocity shear. Reported here for the first time is a unique spatiotemporal variation of the local E×B velocity, which is found to be essential for the existence of this system. The LCO system is quasistationary, existing from 3 to 12 plasma energy confinement times (∼30-900 LCO cycles) limited by hardware constraints. This plasma system appears to contribute strongly to the edge transport in these high performance and transient-free plasmas, as evident from oscillations in transport relevant edge parameters at LCO time scale.

2.
Phys Rev Lett ; 113(13): 135001, 2014 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-25302895

RESUMO

A path to a new high performance regime has been discovered in tokamaks that could improve the attractiveness of a fusion reactor. Experiments on DIII-D using a quiescent H-mode edge have navigated a valley of improved edge peeling-ballooning stability that opens up with strong plasma shaping at high density, leading to a doubling of the edge pressure over the standard H mode with edge localized modes at these parameters. The thermal energy confinement time increases as a result of both the increased pedestal height and improvements in the core transport and reduced low-k turbulence. Calculations of the pedestal height and width as a function of density using constraints imposed by peeling-ballooning and kinetic-ballooning theory are in quantitative agreement with the measurements.

3.
Phys Rev Lett ; 110(4): 045003, 2013 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-25166172

RESUMO

A critical gradient threshold has been observed for the first time in a systematic, controlled experiment for a locally measured turbulent quantity in the core of a confined high-temperature plasma. In an experiment in the DIII-D tokamak where L(T(e))(-1) = |∇T(e)|/T(e) and toroidal rotation were varied, long wavelength (k(θ)ρ(s) ≲ 0.4) electron temperature fluctuations exhibit a threshold in L(T(e))(-1): below, they change little; above, they steadily increase. The increase in δT(e)/T(e) is concurrent with increased electron heat flux and transport stiffness. Observations were insensitive to rotation. Accumulated evidence strongly enforces the identification of the experimentally observed threshold with ∇T(e)-driven trapped electron mode turbulence.

4.
Phys Rev Lett ; 108(15): 155002, 2012 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-22587261

RESUMO

Direct evidence of zonal flow (ZF) predator-prey oscillations and the synergistic roles of ZF- and equilibrium E×B flow shear in triggering the low- to high-confinement (L- to H-mode) transition in the DIII-D tokamak is presented. Periodic turbulence suppression is first observed in a narrow layer at and just inside the separatrix when the shearing rate transiently exceeds the turbulence decorrelation rate. The final transition to H mode with sustained turbulence and transport reduction is controlled by equilibrium E×B shear due to the increasing ion pressure gradient.

5.
Phys Rev Lett ; 107(5): 055004, 2011 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-21867077

RESUMO

A set of high frequency coherent (HFC) modes (f=80-250 kHz) is observed with beam emission spectroscopy measurements of density fluctuations in the pedestal of a strongly shaped quiescent H-mode plasma on DIII-D, with characteristics predicted for kinetic ballooning modes (KBM): propagation in the ion-diamagnetic drift direction; a frequency near 0.2-0.3 times the ion-diamagnetic frequency; inferred toroidal mode numbers of n∼10-25; poloidal wave numbers of k(θ)∼0.17-0.4 cm(-1); and high measured decorrelation rates (τ(c)(-1)∼ω(s)∼0.5×10(6) s(-1)). Their appearance correlates with saturation of the pedestal pressure.

6.
Phys Rev Lett ; 106(11): 115001, 2011 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-21469867

RESUMO

The first measurements of turbulent stresses and flows inside the separatrix of a tokamak H-mode plasma are reported, using a reciprocating multitip Langmuir probe at the DIII-D tokamak. A strong co-current rotation layer at the separatrix is found to precede intrinsic rotation development in the core. The measured fluid turbulent stresses transport toroidal momentum outward against the velocity gradient and thus try to sustain the edge layer. However, large kinetic stresses must exist to explain the net inward momentum transport leading to co-current core plasma rotation. The importance of such kinetic stresses is corroborated by the success of a simple orbit loss model, representing a purely kinetic mechanism, in the prediction of features of the edge corotation layer.

7.
Rev Sci Instrum ; 92(4): 043518, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-34243419

RESUMO

Sixteen new tangential views for the charge exchange recombination (CER) spectroscopy diagnostic at DIII-D were installed in 2019 on the high-field side (HFS) of the tokamak with the main goal being the measurement of main-ion (deuterium) poloidal rotation. Eight of the new views are connected to spectrometers, which view the main-ion spectrum, adding main-ion measurements where there were previously none, and another eight new views increased the spatial resolution of existing impurity (carbon) measurements on the HFS. When combined with the existing low-field side measurements, measurements at two locations on flux surfaces out to a normalized minor radius of ≈0.6 are possible. The new tangential views have been used to measure the deuterium poloidal rotation directly for the first time using the Poloidal Asymmetry in Angular Rotation (PAAR) method. These new measurements enable further testing of the validity of neoclassical poloidal rotation predictions. Separate measurements of the radial electric field can be made for an impurity ion and the main-ion by combining the PAAR measurements with additional CER measurements of toroidal rotation, temperature, and density. These independent measurements of the radial electric field agree reasonably well.

8.
Int J Tuberc Lung Dis ; 24(7): 694-699, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32718402

RESUMO

BACKGROUND: In 2016, 3% of newly diagnosed patients with tuberculosis (TB) left the United States, of whom 24% moved to Mexico. Continuity of care for TB is important to ensure patients complete treatment and reduce TB transmission. CureTB provides continuity of care for patients with TB who move out of the United States by referring them for care at their destination.METHODS: Analysis of CureTB data collected between January 2012 to December 2015 to describe demographics and outcomes of referred patients and examine factors contributing to successful treatment outcomes.RESULTS: CureTB received 1347 referrals mostly from health departments and law enforcement agencies in the United States (92%). A total of 858 referrals were for patients with verified or possible TB (64%). Most patients moved to Mexico or other Latin American countries (96%) and completed treatment after departing (78%). Poor treatment outcomes were associated with being in custody (33%), not being interviewed by CureTB (30%), and not having diabetes (18%).CONCLUSION: CureTB successfully promoted transnational continuity of care for patients by exchanging information with international public health authorities and linking them directly with patients. This patient-centered strategy helps improve TB treatment success and reduce the global burden and transmission of TB.


Assuntos
Tuberculose , Continuidade da Assistência ao Paciente , Humanos , México , Encaminhamento e Consulta , Resultado do Tratamento , Tuberculose/terapia , Estados Unidos
9.
Rev Sci Instrum ; 89(10): 10D111, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30399861

RESUMO

We report tests of an alternate technique for constraining MHD equilibrium analysis in tokamak plasmas using internal magnetic field measurements based on | B | measurements from the motional Stark splitting of Dα spectral lines emitted by a neutral heating beam (MSE-LS). We compare results using MSE-LS with those of the standard equilibrium analysis technique based on line polarization of the Dα emission (MSE-LP). An alternative to MSE-LP is needed in future devices such as ITER where MSE-LP will be difficult due to a plasma-induced coating of the first optical element. The tests utilized data from 10 DIII-D shots with 7 MSE-LS and 14 MSE-LP views covering a range of radii along the outer midplane of the plasma. Seven MSE-LS measurements can contribute significantly to the equilibrium reconstruction of pressure and q profiles using both synthetic and experimental DIII-D MSE-LS data. For example, 7 MSE-LS plus seven MSE-LP measurements give a fit quality that is as good as the same cases with 14 MSE-LP measurements. Analyzing synthetic data for 14 MSE-LS measurements shows significant improvement in fitting quality over the case with 7 MSE-LS locations.

10.
Rev Sci Instrum ; 89(10): 10D116, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30399968

RESUMO

A new calibration method for the DIII-D charge-exchange spectroscopy system produces a smoother impurity density profile compared to previous techniques, improving the accuracy of the impurity density profile reconstruction. The relative intensity calibration between the chords of the DIII-D charge-exchange recombination spectroscopy system is performed by firing neutral beams into the evacuated vacuum vessel pre-filled with neutral gas. Relative calibration is required in order to account for uncertainty in the 3D geometry of the neutral beam. Previous methods using helium gas have been improved by using xenon, which emits an emission line close to the commonly used carbon wavelength 5290.5 Å, as well as improved timing of the gas injection, inclusion of variations in the vessel pressure, and timing of neutral beam injection. Photoemission spectra recorded by 112 sightlines viewing 6 neutral beams are compared and used to form a relative calibration factor for each sightline. This relative calibration is shown to improve the quality of the measured ion density profile.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA