RESUMO
BACKGROUND AND PURPOSE: Multiple techniques can be used to assist with more accurate patient setup and monitoring during Stereotactic body radiation therapy (SBRT) treatment. This study analyzes the accuracy of 3D surface mapping with Surface-guided radiation therapy (SGRT) in detecting interfraction setup error and intrafraction motion during SBRT treatments of the lung and abdomen. MATERIALS AND METHODS: Seventy-one patients with 85 malignant thoracic or abdominal tumors treated with SBRT were analyzed. For initial patient setup, an alternating scheme of kV/kV imaging or SGRT was followed by cone beam computed tomography (CBCT) for more accurate tumor volumetric localization. The CBCT six degree shifts after initial setup with each method were recorded to assess interfraction setup error. Patients were then monitored continuously with SGRT during treatment. If an intrafractional shift in any direction >2 mm for longer than 2 sec was detected by SGRT, then CBCT was repeated and the recorded deltas were compared to those detected by SGRT. RESULTS: Interfractional shifts after SGRT setup and CBCT were small in all directions with mean values of <5 mm and < 0.5 degrees in all directions. Additionally, 25 patients had detected intrafraction motion by SGRT during a total of 34 fractions. This resulted in 25 (73.5%) additional shifts of at least 2 mm on subsequent CBCT. When comparing the average vector detected shift by SGRT to the resulting vector shift on subsequent CBCT, no significant difference was found between the two. CONCLUSIONS: Surface-guided radiation therapy provides initial setup within 5 mm for patients treated with SBRT and can be used in place of skin marks or planar kV imaging prior to CBCT. In addition, continuous monitoring with SGRT during treatment was valuable in detecting potentially clinically meaningful intrafraction motion and was comparable in magnitude to shifts from additional CBCT scans. PTV margin reduction may be feasible for SBRT in the lung and abdomen when using SGRT for continuous patient monitoring during treatment.
Assuntos
Radiocirurgia , Radioterapia Guiada por Imagem , Abdome/diagnóstico por imagem , Tomografia Computadorizada de Feixe Cônico , Humanos , Pulmão , Movimento , Planejamento da Radioterapia Assistida por ComputadorRESUMO
Patients treated with stereotactic radiosurgery (SRS) for brain metastases (BM) are at increased risk of distant brain failure (DBF). Two nomograms have been recently published to predict individualized risk of DBF after SRS. The goal of this study was to assess the external validity of these nomograms in an independent patient cohort. The records of consecutive patients with BM treated with SRS at Levine Cancer Institute and Emory University between 2005 and 2013 were reviewed. Three validation cohorts were generated based on the specific nomogram or recursive partitioning analysis (RPA) entry criteria: Wake Forest nomogram (n = 281), Canadian nomogram (n = 282), and Canadian RPA (n = 303) validation cohorts. Freedom from DBF at 1-year in the Wake Forest study was 30% compared with 50% in the validation cohort. The validation c-index for both the 6-month and 9-month freedom from DBF Wake Forest nomograms was 0.55, indicating poor discrimination ability, and the goodness-of-fit test for both nomograms was highly significant (p < 0.001), indicating poor calibration. The 1-year actuarial DBF in the Canadian nomogram study was 43.9% compared with 50.9% in the validation cohort. The validation c-index for the Canadian 1-year DBF nomogram was 0.56, and the goodness-of-fit test was also highly significant (p < 0.001). The validation accuracy and c-index of the Canadian RPA classification was 53% and 0.61, respectively. The Wake Forest and Canadian nomograms for predicting risk of DBF after SRS were found to have limited predictive ability in an independent bi-institutional validation cohort. These results reinforce the importance of validating predictive models in independent patient cohorts.
Assuntos
Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/radioterapia , Nomogramas , Radiocirurgia/efeitos adversos , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias Encefálicas/secundário , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Resultado do Tratamento , Adulto JovemRESUMO
Pre-operative stereotactic radiosurgery (pre-SRS) has been shown as a viable treatment option for resectable brain metastases (BM). The aim of this study is to compare oncologic outcomes and toxicities for pre-SRS and post-operative WBRT (post-WBRT) for resectable BM. We reviewed records of consecutive patients who underwent resection of BM and either pre-SRS or post-WBRT between 2005 and 2013 at two institutions. Overall survival (OS) was calculated using the Kaplan-Meier method. Cumulative incidence was used for intracranial outcomes. Multivariate analysis (MVA) was performed using the Cox and Fine and Gray models, respectively. Overall, 102 patients underwent surgical resection of BM; 66 patients with 71 lesions received pre-SRS while 36 patients with 42 cavities received post-WBRT. Baseline characteristics were similar except for the pre-SRS cohort having more single lesions (65.2% vs. 38.9%, p = 0.001) and smaller median lesion volume (8.3 cc vs. 15.3 cc, p = 0.006). 1-year OS was similar between cohorts (58% vs. 56%, respectively) (p = 0.43). Intracranial outcomes were also similar (2-year outcomes, pre-SRS vs. post-WBRT): local recurrence: 24.5% vs. 25% (p = 0.81), distant brain failure (DBF): 53.2% vs. 45% (p = 0.66), and leptomeningeal disease (LMD) recurrence: 3.5% vs. 9.0% (p = 0.66). On MVA, radiation cohort was not independently associated with OS or any intracranial outcome. Crude rates of symptomatic radiation necrosis were 5.6 and 0%, respectively. OS and intracranial outcomes were similar for patients treated with pre-SRS or post-WBRT for resected BM. Pre-SRS is a viable alternative to post-WBRT for resected BM. Further confirmatory studies with neuro-cognitive outcomes comparing these two treatment paradigms are needed.
Assuntos
Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/cirurgia , Irradiação Craniana , Radiocirurgia , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias Encefálicas/secundário , Irradiação Craniana/efeitos adversos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Cuidados Pós-Operatórios , Cuidados Pré-Operatórios , Radiocirurgia/efeitos adversos , Análise de Sobrevida , Resultado do TratamentoRESUMO
IMPORTANCE: Whole brain radiotherapy (WBRT) significantly improves tumor control in the brain after stereotactic radiosurgery (SRS), yet because of its association with cognitive decline, its role in the treatment of patients with brain metastases remains controversial. OBJECTIVE: To determine whether there is less cognitive deterioration at 3 months after SRS alone vs SRS plus WBRT. DESIGN, SETTING, AND PARTICIPANTS: At 34 institutions in North America, patients with 1 to 3 brain metastases were randomized to receive SRS or SRS plus WBRT between February 2002 and December 2013. INTERVENTIONS: The WBRT dose schedule was 30 Gy in 12 fractions; the SRS dose was 18 to 22 Gy in the SRS plus WBRT group and 20 to 24 Gy for SRS alone. MAIN OUTCOMES AND MEASURES: The primary end point was cognitive deterioration (decline >1 SD from baseline on at least 1 cognitive test at 3 months) in participants who completed the baseline and 3-month assessments. Secondary end points included time to intracranial failure, quality of life, functional independence, long-term cognitive status, and overall survival. RESULTS: There were 213 randomized participants (SRS alone, n = 111; SRS plus WBRT, n = 102) with a mean age of 60.6 years (SD, 10.5 years); 103 (48%) were women. There was less cognitive deterioration at 3 months after SRS alone (40/63 patients [63.5%]) than when combined with WBRT (44/48 patients [91.7%]; difference, -28.2%; 90% CI, -41.9% to -14.4%; P < .001). Quality of life was higher at 3 months with SRS alone, including overall quality of life (mean change from baseline, -0.1 vs -12.0 points; mean difference, 11.9; 95% CI, 4.8-19.0 points; P = .001). Time to intracranial failure was significantly shorter for SRS alone compared with SRS plus WBRT (hazard ratio, 3.6; 95% CI, 2.2-5.9; P < .001). There was no significant difference in functional independence at 3 months between the treatment groups (mean change from baseline, -1.5 points for SRS alone vs -4.2 points for SRS plus WBRT; mean difference, 2.7 points; 95% CI, -2.0 to 7.4 points; P = .26). Median overall survival was 10.4 months for SRS alone and 7.4 months for SRS plus WBRT (hazard ratio, 1.02; 95% CI, 0.75-1.38; P = .92). For long-term survivors, the incidence of cognitive deterioration was less after SRS alone at 3 months (5/11 [45.5%] vs 16/17 [94.1%]; difference, -48.7%; 95% CI, -87.6% to -9.7%; P = .007) and at 12 months (6/10 [60%] vs 17/18 [94.4%]; difference, -34.4%; 95% CI, -74.4% to 5.5%; P = .04). CONCLUSIONS AND RELEVANCE: Among patients with 1 to 3 brain metastases, the use of SRS alone, compared with SRS combined with WBRT, resulted in less cognitive deterioration at 3 months. In the absence of a difference in overall survival, these findings suggest that for patients with 1 to 3 brain metastases amenable to radiosurgery, SRS alone may be a preferred strategy. TRIAL REGISTRATION: clinicaltrials.gov Identifier: NCT00377156.
Assuntos
Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/cirurgia , Transtornos Cognitivos/etiologia , Cognição/efeitos da radiação , Irradiação Craniana , Adulto , Idoso , Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/secundário , Terapia Combinada/métodos , Fracionamento da Dose de Radiação , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Qualidade de Vida , Radiocirurgia , Análise de Sobrevida , Sobreviventes , Fatores de TempoRESUMO
Temozolomide (TMZ) and BCNU have demonstrated anti-glioma synergism in preclinical models. We report final data from a prospective, multi-institutional study of BCNU wafers and early TMZ followed by radiation therapy with TMZ in patients with newly diagnosed malignant glioma. 65 patients were consented in 4 institutions, and 46 patients (43 GBM, 3 AA) were eligible for analysis. After resection and BCNU wafer placement, TMZ began on day four postoperatively. Radiation and TMZ (RT/TMZ) were then administered, followed by monthly TMZ at 200 mg/m2 for the first 26 patients, which was reduced to 150 mg/m2 for the remaining 20 patients. Non-hematologic toxicities were minimal. Nine of 27 patients (33 %) who received 200 mg/m2 TMZ, but only 1 of 20 (5 %) who received 150 mg/m2, experienced grade 3/4 thrombocytopenia. Median progression free survival (PFS) and overall survival (OS) period was 8.5 and 18 months, respectively. The 1-year OS rate was 76 %, which is a significant improvement compared with the historical control 1-year OS rate of 59 % (p = 0.023). However, there was no difference in 1-year OS compared with standard RT/TMZ (p = 0.12) or BCNU wafer followed by RT/TMZ (p = 0.87) in post hoc analyses. Early post-operative TMZ can be safely administered with BCNU wafers following resection of malignant glioma at the 150 mg/m2 dose level. Although there was an OS benefit compared to historical control, there was no indication of benefit for BCNU wafers and early TMZ in addition to standard RT/TMZ or early TMZ in addition to regimens of BCNU wafers followed by RT/TMZ.
Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/terapia , Glioma/mortalidade , Glioma/terapia , Adulto , Idoso , Neoplasias Encefálicas/patologia , Carmustina/administração & dosagem , Terapia Combinada , Dacarbazina/administração & dosagem , Dacarbazina/análogos & derivados , Feminino , Seguimentos , Glioma/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Período Pós-Operatório , Prognóstico , Estudos Prospectivos , Dosagem Radioterapêutica , Taxa de Sobrevida , TemozolomidaRESUMO
PURPOSE: Preoperative stereotactic radiosurgery (SRS) is a feasible alternative to postoperative SRS for resected brain metastases (BM). Most reported studies of preoperative SRS used single-fraction SRS (SF-SRS). The goal of this study was to compare outcomes and toxicity of preoperative SF-SRS with multifraction (3-5 fractions) SRS (MF-SRS) in a large international multicenter cohort (Preoperative Radiosurgery for Brain Metastases-PROPS-BM). METHODS AND MATERIALS: Patients with BM from solid cancers, of which at least 1 lesion was treated with preoperative SRS followed by planned resection, were included from 8 institutions. SRS to synchronous intact BM was allowed. Exclusion criteria included prior or planned whole brain radiation therapy. Intracranial outcomes were estimated using cumulative incidence with competing risk of death. Propensity score matched (PSM) analyses were performed. RESULTS: The study cohort included 404 patients with 416 resected index lesions, of which SF-SRS and MF-SRS were used for 317 (78.5%) and 87 patients (21.5%), respectively. Median dose was 15 Gy in 1 fraction for SF-SRS and 24 Gy in 3 fractions for MF-SRS. Univariable analysis demonstrated that SF-SRS was associated with higher cavity local recurrence (LR) compared with MF-SRS (2-year: 16.3% vs 2.9%; P = .004), which was also demonstrated in multivariable analysis. PSM yielded 81 matched pairs (n = 162). PSM analysis also demonstrated significantly higher rate of cavity LR with SF-SRS (2-year: 19.8% vs 3.3%; P = .003). There was no difference in adverse radiation effect, meningeal disease, or overall survival between cohorts in either analysis. CONCLUSIONS: Preoperative MF-SRS was associated with significantly reduced risk of cavity LR in both the unmatched and PSM analyses. There was no difference in adverse radiation effect, meningeal disease, or overall survival based on fractionation. MF-SRS may be a preferred option for neoadjuvant radiation therapy of resected BMs. Additional confirmatory studies are needed. A phase 3 randomized trial of single-fraction preoperative versus postoperative SRS (NRG-BN012) is ongoing (NCT05438212).
Assuntos
Neoplasias Encefálicas , Lesões por Radiação , Radiocirurgia , Humanos , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/cirurgia , Neoplasias Encefálicas/patologia , Estudos de Coortes , Fracionamento da Dose de Radiação , Lesões por Radiação/etiologia , Radiocirurgia/efeitos adversos , Radiocirurgia/métodos , Estudos Retrospectivos , Resultado do Tratamento , Ensaios Clínicos Fase III como Assunto , Ensaios Clínicos Controlados Aleatórios como AssuntoRESUMO
Enhancing the efficacy of immunotherapy in brain metastases (BrM) requires an improved understanding of the immune composition of BrM and how this is affected by radiation and dexamethasone. Our two-arm pilot study (NCT04895592) allocated 26 patients with BrM to either low (Arm A) or high (Arm B) dose peri-operative dexamethasone followed by pre-operative stereotactic radiosurgery (pSRS) and resection (n= 13 per arm). The primary endpoint, a safety analysis at 4 months, was met. The secondary clinical endpoints of overall survival, distant brain failure, leptomeningeal disease and local recurrence at 12-months were 66%, 37.3%, 6%, and 0% respectively and were not significantly different between arms (p= 0.7739, p= 0.3884, p= 0.3469). Immunological data from two large retrospective BrM datasets and confirmed by correlates from both arms of this pSRS prospective trial revealed that BrM CD8 T cells were composed of predominantly PD1+ TCF1+ stem-like and PD1+ TCF1-TIM3+ effector-like cells. Clustering of TCF1+ CD8 T cells with antigen presenting cells in immune niches was prognostic for local control, even without pSRS. Following pSRS, CD8 T cell and immune niche density were transiently reduced compared to untreated BrM, followed by a rebound 6+ days post pSRS with an increased frequency of TCF1- effector-like cells. In sum, pSRS is safe and therapeutically beneficial, and these data provide a framework for how pSRS may be leveraged to maximize intracranial CD8 T cell responses.
Assuntos
Neoplasias Encefálicas , Dexametasona , Radiocirurgia , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias Encefálicas/secundário , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/terapia , Linfócitos T CD8-Positivos/imunologia , Terapia Combinada , Dexametasona/uso terapêutico , Dexametasona/administração & dosagem , Projetos Piloto , Estudos Prospectivos , Radiocirurgia/métodos , Estudos Retrospectivos , Resultado do TratamentoRESUMO
Importance: Preoperative stereotactic radiosurgery (SRS) has been demonstrated as a feasible alternative to postoperative SRS for resectable brain metastases (BMs) with potential benefits in adverse radiation effects (AREs) and meningeal disease (MD). However, mature large-cohort multicenter data are lacking. Objective: To evaluate preoperative SRS outcomes and prognostic factors from a large international multicenter cohort (Preoperative Radiosurgery for Brain Metastases-PROPS-BM). Design, Setting, and Participants: This multicenter cohort study included patients with BMs from solid cancers, of which at least 1 lesion received preoperative SRS and a planned resection, from 8 institutions. Radiosurgery to synchronous intact BMs was allowed. Exclusion criteria included prior or planned whole-brain radiotherapy and no cranial imaging follow-up. Patients were treated between 2005 and 2021, with most treated between 2017 and 2021. Exposures: Preoperative SRS to a median dose to 15 Gy in 1 fraction or 24 Gy in 3 fractions delivered at a median (IQR) of 2 (1-4) days before resection. Main Outcomes and Measures: The primary end points were cavity local recurrence (LR), MD, ARE, overall survival (OS), and multivariable analysis of prognostic factors associated with these outcomes. Results: The study cohort included 404 patients (214 women [53%]; median [IQR] age, 60.6 [54.0-69.6] years) with 416 resected index lesions. The 2-year cavity LR rate was 13.7%. Systemic disease status, extent of resection, SRS fractionation, type of surgery (piecemeal vs en bloc), and primary tumor type were associated with cavity LR risk. The 2-year MD rate was 5.8%, with extent of resection, primary tumor type, and posterior fossa location being associated with MD risk. The 2-year any-grade ARE rate was 7.4%, with target margin expansion greater than 1 mm and melanoma primary being associated with ARE risk. Median OS was 17.2 months (95% CI, 14.1-21.3 months), with systemic disease status, extent of resection, and primary tumor type being the strongest prognostic factors associated with OS. Conclusions and Relevance: In this cohort study, the rates of cavity LR, ARE, and MD after preoperative SRS were found to be notably low. Several tumor and treatment factors were identified that are associated with risk of cavity LR, ARE, MD, and OS after treatment with preoperative SRS. A phase 3 randomized clinical trial of preoperative vs postoperative SRS (NRG BN012) has began enrolling (NCT05438212).
Assuntos
Neoplasias Encefálicas , Radiocirurgia , Humanos , Feminino , Pessoa de Meia-Idade , Radiocirurgia/métodos , Estudos de Coortes , Estudos Retrospectivos , Fatores de Risco , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/cirurgia , Neoplasias Encefálicas/secundárioRESUMO
The CD8+ T-cell response is prognostic for survival outcomes in several tumor types. However, whether this extends to tumors in the brain, an organ with barriers to T cell entry, remains unclear. Here, we analyzed immune infiltration in 67 brain metastasis (BrM) and found high frequencies of PD1+ TCF1+ stem-like CD8+ T-cells and TCF1- effector-like cells. Importantly, the stem-like cells aggregate with antigen presenting cells in immune niches, and niches were prognostic for local disease control. Standard of care for BrM is resection followed by stereotactic radiosurgery (SRS), so to determine SRS's impact on the BrM immune response, we examined 76 BrM treated with pre-operative SRS (pSRS). pSRS acutely reduced CD8+ T cells at 3 days. However, CD8+ T cells rebounded by day 6, driven by increased frequency of effector-like cells. This suggests that the immune response in BrM can be regenerated rapidly, likely by the local TCF1+ stem-like population.
RESUMO
PURPOSE: Volumetric modulated arc therapy (VMAT) craniospinal irradiation (CSI) has been shown to have significant dosimetric advantages compared to 3-dimensional conformal therapy but is a technically complex process. We sought to develop a guide for all aspects of the VMAT CSI process and report patient dosimetry results. METHODS AND MATERIALS: We initiated VMAT CSI in 2017 and have regularly revised our standard operating procedure for this process since then. Herein, we report a detailed template for the entire VMAT CSI process from initial patient setup and immobilization at time of computed tomography (CT) simulation to contouring and treatment planning, quality assurance, and therapy delivery. The records of 12 patients who were treated with VMAT CSI were also retrospectively reviewed. RESULTS: Patient age ranged from 2 to 59 years with 5 pediatric patients (age <18 years), 5 young adults (age 18-35 years), and 2 older adults (age >35 years). The majority of patients (67%) had medulloblastoma. CSI dose ranged from 21.6 to 36 Gy, with a median of 36 Gy. The median CSI planning target volume was 2383 cc with a median V95% of 99.8% and median 0.03 cc hotspot of 112.5%. The average V107% was 7.4% and the average conformality index was 1.01. CONCLUSIONS: VMAT CSI has potentially significant dosimetric and acute toxicity advantages compared to 3-dimensional conformal. However, proper procedures need to be in place throughout the process in order to be able to realize these potential advantages. We herein describe our detailed standard operating procedure for VMAT CSI. Recognizing the scarcity of proton beam centers in many areas, VMAT CSI represents a feasible treatment with more widespread availability.
Assuntos
Neoplasias Cerebelares , Radiação Cranioespinal , Radioterapia de Intensidade Modulada , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Radiação Cranioespinal/métodos , Humanos , Pessoa de Meia-Idade , Órgãos em Risco/efeitos da radiação , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Estudos Retrospectivos , Adulto JovemRESUMO
Stereotactic radiosurgery (SRS) is the delivery of a high dose ionizing radiation in a highly conformal manner, which allows for significant sparing of nearby healthy tissues. It is typically delivered in 1-5 sessions and has demonstrated safety and efficacy across multiple intracranial neoplasms and functional disorders. In the setting of brain metastases, postoperative and definitive SRS has demonstrated favorable rates of tumor control and improved cognitive preservation compared to conventional whole brain radiation therapy. However, the risk of local failure and treatment-related complications (e.g. radiation necrosis) markedly increases with larger postoperative treatment volumes. Additionally, the risk of leptomeningeal disease is significantly higher in patients treated with postoperative SRS. In the setting of high grade glioma, preclinical reports have suggested that preoperative SRS may enhance anti-tumor immunity as compared to postoperative radiotherapy. In addition to potentially permitting smaller target volumes, tissue analysis may permit characterization of DNA repair pathways and tumor microenvironment changes in response to SRS, which may be used to further tailor therapy and identify novel therapeutic targets. Building on the work from preoperative SRS for brain metastases and preclinical work for high grade gliomas, further exploration of this treatment paradigm in the latter is warranted. Presently, there are prospective early phase clinical trials underway investigating the role of preoperative SRS in the management of high grade gliomas. In the forthcoming sections, we review the biologic rationale for preoperative SRS, as well as pertinent preclinical and clinical data, including ongoing and planned prospective clinical trials.
RESUMO
PURPOSE: This guideline provides updated evidence-based recommendations addressing recent developments in the management of patients with brain metastases, including advanced radiation therapy techniques such as stereotactic radiosurgery (SRS) and hippocampal avoidance whole brain radiation therapy and the emergence of systemic therapies with central nervous system activity. METHODS: The American Society for Radiation Oncology convened a task force to address 4 key questions focused on the radiotherapeutic management of intact and resected brain metastases from nonhematologic solid tumors. The guideline is based on a systematic review provided by the Agency for Healthcare Research and Quality. Recommendations were created using a predefined consensus-building methodology and system for grading evidence quality and recommendation strength. RESULTS: Strong recommendations are made for SRS for patients with limited brain metastases and Eastern Cooperative Oncology Group performance status 0 to 2. Multidisciplinary discussion with neurosurgery is conditionally recommended to consider surgical resection for all tumors causing mass effect and/or that are greater than 4 cm. For patients with symptomatic brain metastases, upfront local therapy is strongly recommended. For patients with asymptomatic brain metastases eligible for central nervous system-active systemic therapy, multidisciplinary and patient-centered decision-making to determine whether local therapy may be safely deferred is conditionally recommended. For patients with resected brain metastases, SRS is strongly recommended to improve local control. For patients with favorable prognosis and brain metastases receiving whole brain radiation therapy, hippocampal avoidance and memantine are strongly recommended. For patients with poor prognosis, early introduction of palliative care for symptom management and caregiver support are strongly recommended. CONCLUSIONS: The task force has proposed recommendations to inform best clinical practices on the use of radiation therapy for brain metastases with strong emphasis on multidisciplinary care.
Assuntos
Neoplasias Encefálicas , Neurocirurgia , Radioterapia (Especialidade) , Radiocirurgia , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/secundário , Consenso , Humanos , Radiocirurgia/efeitos adversosRESUMO
BACKGROUND: Coronavirus disease 2019 (COVID-19) caused by the SARS-CoV-2 virus is a current pandemic. We initiated a program of systematic SARS-CoV-2 polymerase chain reaction (PCR) testing in all asymptomatic patients receiving radiotherapy (RT) at a large radiation oncology network in the Charlotte, NC metropolitan region and report adherence and results of the testing program. METHODS: Patients undergoing simulation for RT between May 18, 2020 and July 10, 2020 within the Levine Cancer Institute radiation oncology network who were asymptomatic for COVID-19 associated symptoms, without previous positive SARS-CoV-2 testing, and without recent high-risk contacts were included. PCR testing was performed on nasal cavity or nasopharyngeal swab samples. Testing was performed within 2 weeks of RT start (pre-RT) and at least every 4 weeks during RT for patients with prolonged RT courses (intra-RT). An automated task based process using the oncology electronic medical record (EMR) was developed specifically for this purpose. RESULTS: A total of 604 unique patients were included in the cohort. Details on testing workflow and implementation are described herein. Pre-RT PCR testing was performed in 573 (94.9%) patients, of which 4 (0.7%) were positive. The adherence rate to intra-RT testing overall was 91.6%. Four additional patients (0.7%) tested positive during their RT course, of whom 3 were tested due to symptom development and 1 was asymptomatic and identified via systematic testing. A total of 8 (1.3%) patients tested positive overall. There were no known cases of SARS-CoV-2 transmission from infected patients to clinic staff and/or other patients. CONCLUSIONS: We detailed the workflows used to implement systematic SARS-CoV-2 for asymptomatic patients at a large radiation oncology network. Adherence rates for pre-RT and intra-RT testing were high using this process. This information allowed for appropriate delay in initiating RT, minimizing the occurrence of RT treatment interruptions, and no known cases of transmission from infected patients to clinic staff and/or other patients.
Assuntos
Infecções Assintomáticas , Teste de Ácido Nucleico para COVID-19 , COVID-19/diagnóstico , Neoplasias/radioterapia , Radioterapia (Especialidade)/organização & administração , Atenção Terciária à Saúde , Idoso , COVID-19/complicações , Registros Eletrônicos de Saúde , Reações Falso-Negativas , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias/complicações , North Carolina/epidemiologia , Cooperação do Paciente , Reação em Cadeia da Polimerase , Estudos ProspectivosRESUMO
PURPOSE: Previous trials have shown no benefit for radiation therapy (RT) dose escalation when RT is given as adjuvant monotherapy for infiltrative low-grade glioma (LGG). However, the current standard of care for high-risk LGG is RT with concurrent and/or adjuvant chemotherapy. The effect of RT dose escalation on overall survival (OS) in the setting of concurrent and/or adjuvant chemotherapy is not well established. METHODS AND MATERIALS: We used the National Cancer Database to select records for adult patients with intracranial grade 2 LGG diagnosed between 2004 and 2015. Patients must have received adjuvant external beam RT with concurrent and/or adjuvant chemotherapy. RT dose level was categorized as standard (45-54 Gy) or high (>54-65 Gy). Multivariable and propensity score matched analyses were used. RESULTS: The study cohort consisted of 1043 patients, of whom 644 (62%) received standard dose (median, 54 Gy) and 399 (38%) received high-dose RT (median, 60 Gy). RT dose level was not associated with OS (hazard ratio, 1.2; P = .1) in multivariable analysis. Propensity score matching yielded 380 matched pairs (n = 760). There was no difference in OS for high-dose versus standard-dose RT in the matched cohort (5-year OS 64% vs 69%; P = .14) or in the 2 prespecified subgroups of astrocytoma histology and 1p/19q noncodeleted. CONCLUSIONS: Adjuvant RT dose escalation above 54 Gy in the setting of concurrent and/or adjuvant chemotherapy was not associated with improved OS for patients with infiltrative LGG in this National Cancer Database retrospective study. This was also true for the subgroups with less chemotherapy-sensitive disease, including astrocytoma histology and 1p/19q noncodeleted, although these analyses were limited by small size. Methods to improve OS other than RT dose escalation in the setting of concurrent and/or adjuvant chemotherapy should be considered for patients with poor-prognosis LGG.
RESUMO
PURPOSE: Preoperative radiosurgery (SRS) is a feasible alternative to postoperative SRS, with potential benefits in adverse radiation effect (ARE) and leptomeningeal disease (LMD) relapse. However, previous studies are limited by small patient numbers and single-institution designs. Our aim was to evaluate preoperative SRS outcomes and prognostic factors from a large multicenter cohort (Preoperative Radiosurgery for Brain Metastases [PROPS-BM]). METHODS AND MATERIALS: Patients with brain metastases (BM) from solid cancers who had at least 1 lesion treated with preoperative SRS and underwent a planned resection were included from 5 institutions. SRS to synchronous intact BM was allowed. Radiographic meningeal disease (MD) was categorized as either nodular or classical "sugarcoating" (cLMD). RESULTS: The cohort included 242 patients with 253 index lesions. Most patients (62.4%) had a single BM, 93.7% underwent gross total resection, and 98.8% were treated with a single fraction to a median dose of 15 Gray to a median gross tumor volume of 9.9 cc. Cavity local recurrence (LR) rates at 1 and 2 years were 15% and 17.9%, respectively. Subtotal resection (STR) was a strong independent predictor of LR (hazard ratio, 9.1; P < .001). One and 2-year rates of MD were 6.1% and 7.6% and of any grade ARE were 4.7% and 6.8% , respectively. The median overall survival (OS) duration was 16.9 months and the 2-year OS rate was 38.4%. The majority of MD was cLMD (13 of 19 patients with MD; 68.4%). Of 242 patients, 10 (4.1%) experienced grade ≥3 postoperative surgical complications. CONCLUSIONS: To our knowledge, this multicenter study represents the largest cohort treated with preoperative SRS. The favorable outcomes previously demonstrated in single-institution studies, particularly the low rates of MD and ARE, are confirmed in this expanded multicenter analysis, without evidence of an excessive postoperative surgical complication risk. STR, though infrequent, is associated with significantly worse cavity LR. A randomized trial between preoperative and postoperative SRS is warranted and is currently being designed.
Assuntos
Neoplasias Encefálicas , Lesões por Radiação , Radiocirurgia , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/cirurgia , Estudos de Coortes , Humanos , Recidiva Local de Neoplasia , Complicações Pós-Operatórias , Radiocirurgia/efeitos adversos , Estudos Retrospectivos , Resultado do TratamentoRESUMO
PURPOSE: Postoperative stereotactic radiosurgery (SRS) is associated with up to 30% risk of subsequent leptomeningeal disease (LMD). Radiographic patterns of LMD (classical sugarcoating [cLMD] vs. nodular [nLMD]) in this setting has been shown to be prognostic. However, the association of these findings with neurologic death (ND) is not well described. METHODS AND MATERIALS: The records for patients with brain metastases who underwent surgical resection and adjunctive SRS to 1 lesion (SRS to other intact lesions was allowed) and subsequently developed LMD were combined from 7 tertiary care centers. Salvage radiation therapy (RT) for LMD was categorized according to use of whole-brain versus focal cranial RT. RESULTS: The study cohort included 125 patients with known cause of death. The ND rate in these patients was 79%, and the rate in patients who underwent LMD salvage treatment (n = 107) was 76%. Univariate logistic regression demonstrated radiographic pattern of LMD (cLMD vs. nLMD, odds ratio: 2.9; P = .04) and second LMD failure after salvage treatment (odds ratio: 3.9; P = .02) as significantly associated with ND. The ND rate was 86% for cLMD versus 68% for nLMD. Whole-brain RT was used in 95% of patients with cLMD and 52% with nLMD. In the nLMD cohort (n = 58), there was no difference in ND rate based on type of salvage RT (whole-brain RT: 67% vs. focal cranial RT: 68%, P = .92). CONCLUSIONS: LMD after surgery and SRS for brain metastases is a clinically significant event with high rates of ND. Classical LMD pattern (vs. nodular) and second LMD failure after salvage treatment were significantly associated with a higher risk of ND. Patients with nLMD treated with salvage focal cranial RT did not have higher ND rates compared with WBRT. Methods to decrease LMD and the subsequent high risk of ND in this setting warrant further investigation.
RESUMO
QUESTION: Should patients with newly-diagnosed metastatic brain tumors undergo stereotactic radiosurgery (SRS) compared with other treatment modalities? Target population These recommendations apply to adults with newly diagnosed solid brain metastases amenable to SRS; lesions amenable to SRS are typically defined as measuring less than 3 cm in maximum diameter and producing minimal (less than 1 cm of midline shift) mass effect. Recommendations SRS plus WBRT vs. WBRT alone Level 1 Single-dose SRS along with WBRT leads to significantly longer patient survival compared with WBRT alone for patients with single metastatic brain tumors who have a KPS > or = 70.Level 1 Single-dose SRS along with WBRT is superior in terms of local tumor control and maintaining functional status when compared to WBRT alone for patients with 1-4 metastatic brain tumors who have a KPS > or =70.Level 2 Single-dose SRS along with WBRT may lead to significantly longer patient survival than WBRT alone for patients with 2-3 metastatic brain tumors.Level 3 There is class III evidence demonstrating that single-dose SRS along with WBRT is superior to WBRT alone for improving patient survival for patients with single or multiple brain metastases and a KPS<70 [corrected].Level 4 There is class III evidence demonstrating that single-dose SRS along with WBRT is superior to WBRT alone for improving patient survival for patients with single or multiple brain metastases and a KPS < 70. SRS plus WBRT vs. SRS alone Level 2 Single-dose SRS alone may provide an equivalent survival advantage for patients with brain metastases compared with WBRT + single-dose SRS. There is conflicting class I and II evidence regarding the risk of both local and distant recurrence when SRS is used in isolation, and class I evidence demonstrates a lower risk of distant recurrence with WBRT; thus, regular careful surveillance is warranted for patients treated with SRS alone in order to provide early identification of local and distant recurrences so that salvage therapy can be initiated at the soonest possible time. Surgical Resection plus WBRT vs. SRS +/- WBRT Level 2 Surgical resection plus WBRT, vs. SRS plus WBRT, both represent effective treatment strategies, resulting in relatively equal survival rates. SRS has not been assessed from an evidence-based standpoint for larger lesions (>3 cm) or for those causing significant mass effect (>1 cm midline shift). Level 3: Underpowered class I evidence along with the preponderance of conflicting class II evidence suggests that SRS alone may provide equivalent functional and survival outcomes compared with resection + WBRT for patients with single brain metastases, so long as ready detection of distant site failure and salvage SRS are possible. SRS alone vs. WBRT alone Level 3 While both single-dose SRS and WBRT are effective for treating patients with brain metastases, single-dose SRS alone appears to be superior to WBRT alone for patients with up to three metastatic brain tumors in terms of patient survival advantage.
Assuntos
Neoplasias Encefálicas , Guias de Prática Clínica como Assunto , Radiocirurgia/métodos , Radioterapia Adjuvante/métodos , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/secundário , Neoplasias Encefálicas/cirurgia , Irradiação Craniana/métodos , Medicina Baseada em Evidências , Humanos , Guias de Prática Clínica como Assunto/normasRESUMO
TARGET POPULATION: This recommendation applies to adults with newly diagnosed brain metastases; however, the recommendation below does not apply to the exquisitely chemosensitive tumors, such as germinomas metastatic to the brain. RECOMMENDATION: Should patients with brain metastases receive chemotherapy in addition to whole brain radiotherapy (WBRT)? Level 1 Routine use of chemotherapy following WBRT for brain metastases has not been shown to increase survival and is not recommended. Four class I studies examined the role of carboplatin, chloroethylnitrosoureas, tegafur and temozolomide, and all resulted in no survival benefit. Two caveats are provided in order to allow the treating physician to individualize decision-making: First, the majority of the data are limited to non small cell lung (NSCLC) and breast cancer; therefore, in other tumor histologies, the possibility of clinical benefit cannot be absolutely ruled out. Second, the addition of chemotherapy to WBRT improved response rates in some, but not all trials; response rate was not the primary endpoint in most of these trials and end-point assessment was non-centralized, non-blinded, and post-hoc. Enrollment in chemotherapy-related clinical trials is encouraged.