Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Immunol Rev ; 319(1): 7-26, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37596991

RESUMO

TYRO3, AXL, and MERTK constitute the TAM family of receptor tyrosine kinases, activated by their ligands GAS6 and PROS1. TAMs are necessary for adult homeostasis in the immune, nervous, reproductive, skeletal, and vascular systems. Among additional cellular functions employed by TAMs, phagocytosis is central for tissue health. TAM receptors are dominant in providing phagocytes with the molecular machinery necessary to engulf diverse targets, including apoptotic cells, myelin debris, and portions of live cells in a phosphatidylserine-dependent manner. Simultaneously, TAMs drive the release of anti-inflammatory and tissue repair molecules. Disruption of the TAM-driven phagocytic pathway has detrimental consequences, resulting in autoimmunity, male infertility, blindness, and disrupted vascular integrity, and which is thought to contribute to neurodegenerative diseases. Although structurally and functionally redundant, the TAM receptors and ligands underlie complex signaling cascades, of which several key aspects are yet to be elucidated. We discuss similarities and differences between TAMs and other phagocytic pathways, highlight future directions and how TAMs can be harnessed therapeutically to modulate phagocytosis.


Assuntos
Receptor Tirosina Quinase Axl , Proteínas Proto-Oncogênicas , Masculino , Humanos , Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Transdução de Sinais , c-Mer Tirosina Quinase/metabolismo , Fagocitose
2.
Immunity ; 43(2): 369-81, 2015 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-26231115

RESUMO

Langerhans cells (LCs) populate the mucosal epithelium, a major entry portal for pathogens, yet their ontogeny remains unclear. We found that, in contrast to skin LCs originating from self-renewing radioresistant embryonic precursors, oral mucosal LCs derive from circulating radiosensitive precursors. Mucosal LCs can be segregated into CD103(+)CD11b(lo) (CD103(+)) and CD11b(+)CD103(-) (CD11b(+)) subsets. We further demonstrated that similar to non-lymphoid dendritic cells (DCs), CD103(+) LCs originate from pre-DCs, whereas CD11b(+) LCs differentiate from both pre-DCs and monocytic precursors. Despite this ontogenetic discrepancy between skin and mucosal LCs, the transcriptomic signature and immunological function of oral LCs highly resemble those of skin LCs but not DCs. These findings, along with the epithelial position, morphology, and expression of the LC-associated phenotype strongly suggest that oral mucosal LCs are genuine LCs. Collectively, in a tissue-dependent manner, murine LCs differentiate from at least three distinct precursors (embryonic, pre-DC, and monocytic) in steady state.


Assuntos
Diferenciação Celular , Células Dendríticas/imunologia , Células de Langerhans/imunologia , Monócitos/imunologia , Mucosa Bucal/imunologia , Animais , Antígenos CD/metabolismo , Antígenos de Superfície/genética , Antígenos de Superfície/metabolismo , Circulação Sanguínea , Antígeno CD11b/metabolismo , Células Cultivadas , Epitélio/imunologia , Cadeias alfa de Integrinas/metabolismo , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Lectinas de Ligação a Manose/genética , Lectinas de Ligação a Manose/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Especificidade de Órgãos , Pele/imunologia , Transcriptoma/imunologia
3.
Cell ; 139(6): 1157-69, 2009 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-20005808

RESUMO

The insulin/insulin growth factor (IGF) signaling (IIS) pathway is a key regulator of aging of worms, flies, mice, and likely humans. Delayed aging by IIS reduction protects the nematode C. elegans from toxicity associated with the aggregation of the Alzheimer's disease-linked human peptide, Abeta. We reduced IGF signaling in Alzheimer's model mice and discovered that these animals are protected from Alzheimer's-like disease symptoms, including reduced behavioral impairment, neuroinflammation, and neuronal loss. This protection is correlated with the hyperaggregation of Abeta leading to tightly packed, ordered plaques, suggesting that one aspect of the protection conferred by reduced IGF signaling is the sequestration of soluble Abeta oligomers into dense aggregates of lower toxicity. These findings indicate that the IGF signaling-regulated mechanism that protects from Abeta toxicity is conserved from worms to mammals and point to the modulation of this signaling pathway as a promising strategy for the development of Alzheimer's disease therapy.


Assuntos
Fator de Crescimento Insulin-Like I/metabolismo , Longevidade , Transdução de Sinais , Doença de Alzheimer/metabolismo , Doença de Alzheimer/fisiopatologia , Peptídeos beta-Amiloides/metabolismo , Animais , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Presenilina-1/genética , Presenilina-1/metabolismo , Receptor IGF Tipo 1/metabolismo
4.
Immunity ; 39(1): 160-70, 2013 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-23850380

RESUMO

Dendritic cell (DC) activation is essential for the induction of immune defense against pathogens, yet needs to be tightly controlled to avoid chronic inflammation and exaggerated immune responses. Here, we identify a mechanism of immune homeostasis by which adaptive immunity, once triggered, tempers DC activation and prevents overreactive immune responses. T cells, once activated, produced Protein S (Pros1) that signaled through TAM receptor tyrosine kinases in DCs to limit the magnitude of DC activation. Genetic ablation of Pros1 in mouse T cells led to increased expression of costimulatory molecules and cytokines in DCs and enhanced immune responses to T cell-dependent antigens, as well as increased colitis. Additionally, PROS1 was expressed in activated human T cells, and its ability to regulate DC activation was conserved. Our results identify a heretofore unrecognized, homeostatic negative feedback mechanism at the interface of adaptive and innate immunity that maintains the physiological magnitude of the immune response.


Assuntos
Imunidade Adaptativa/imunologia , Células Dendríticas/imunologia , Proteína S/imunologia , Receptores Proteína Tirosina Quinases/imunologia , Transdução de Sinais/imunologia , Linfócitos T/imunologia , Animais , Células Cultivadas , Colite/genética , Colite/imunologia , Citocinas/imunologia , Citocinas/metabolismo , Células Dendríticas/metabolismo , Citometria de Fluxo , Expressão Gênica/imunologia , Humanos , Immunoblotting , Ativação Linfocitária/imunologia , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Proteína S/genética , Proteína S/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Linfócitos T/metabolismo
5.
Proc Natl Acad Sci U S A ; 115(25): E5736-E5745, 2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29871951

RESUMO

AXL, a member of the TYRO3, AXL, and MERTK (TAM) receptor tyrosine kinase family, has been shown to play a role in the differentiation and activation of epidermal Langerhans cells (LCs). Here, we demonstrate that growth arrest-specific 6 (GAS6) protein, the predominant ligand of AXL, has no impact on LC differentiation and homeostasis. We thus examined the role of protein S (PROS1), the other TAM ligand acting primarily via TYRO3 and MERTK, in LC function. Genetic ablation of PROS1 in keratinocytes resulted in a typical postnatal differentiation of LCs; however, a significant reduction in LC frequencies was observed in adult mice due to increased apoptosis. This was attributed to altered expression of cytokines involved in LC development and tissue homeostasis within keratinocytes. PROS1 was then excised in LysM+ cells to target LCs at early embryonic developmental stages, as well as in adult monocytes that also give rise to LCs. Differentiation and homeostasis of LCs derived from embryonic precursors was not affected following Pros1 ablation. However, differentiation of LCs from bone marrow (BM) precursors in vitro was accelerated, as was their capability to reconstitute epidermal LCs in vivo. These reveal an inhibitory role for PROS1 on BM-derived LCs. Collectively, this study highlights a cell-specific regulation of LC differentiation and homeostasis by TAM signaling.


Assuntos
Proteínas de Transporte/metabolismo , Epiderme/metabolismo , Células de Langerhans/metabolismo , Proteína S/metabolismo , Animais , Medula Óssea/metabolismo , Proteínas de Ligação ao Cálcio , Diferenciação Celular/fisiologia , Homeostase/fisiologia , Queratinócitos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Transdução de Sinais/fisiologia , c-Mer Tirosina Quinase/metabolismo
6.
Proc Natl Acad Sci U S A ; 114(3): E337-E346, 2017 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-28049839

RESUMO

The oral epithelium contributes to innate immunity and oral mucosal homeostasis, which is critical for preventing local inflammation and the associated adverse systemic conditions. Nevertheless, the mechanisms by which the oral epithelium maintains homeostasis are poorly understood. Here, we studied the role of growth arrest specific 6 (GAS6), a ligand of the TYRO3-AXL-MERTK (TAM) receptor family, in regulating oral mucosal homeostasis. Expression of GAS6 was restricted to the outer layers of the oral epithelium. In contrast to protein S, the other TAM ligand, which was constitutively expressed postnatally, expression of GAS6 initiated only 3-4 wk after birth. Further analysis revealed that GAS6 expression was induced by the oral microbiota in a myeloid differentiation primary response gene 88 (MyD88)-dependent fashion. Mice lacking GAS6 presented higher levels of inflammatory cytokines, elevated frequencies of neutrophils, and up-regulated activity of enzymes, generating reactive nitrogen species. We also found an imbalance in Th17/Treg ratio known to control tissue homeostasis, as Gas6-deficient dendritic cells preferentially secreted IL-6 and induced Th17 cells. As a result of this immunological shift, a significant microbial dysbiosis was observed in Gas6-/- mice, because anaerobic bacteria largely expanded by using inflammatory byproducts for anaerobic respiration. Using chimeric mice, we found a critical role for GAS6 in epithelial cells in maintaining oral homeostasis, whereas its absence in hematopoietic cells synergized the level of dysbiosis. We thus propose GAS6 as a key immunological regulator of host-commensal interactions in the oral epithelium.


Assuntos
Homeostase/fisiologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Mucosa Bucal/metabolismo , Animais , Disbiose/metabolismo , Células Epiteliais/metabolismo , Imunidade Inata/imunologia , Inflamação/metabolismo , Interleucina-6 , Camundongos , Camundongos Endogâmicos C57BL , Células Mieloides/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Neutrófilos/metabolismo , Proteína S/metabolismo , Espécies Reativas de Nitrogênio/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , c-Mer Tirosina Quinase/metabolismo
7.
EMBO J ; 34(22): 2820-39, 2015 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-26438723

RESUMO

Do different neurodegenerative maladies emanate from the failure of a mutual protein folding mechanism? We have addressed this question by comparing mutational patterns that are linked to the manifestation of distinct neurodegenerative disorders and identified similar neurodegeneration-linked proline substitutions in the prion protein and in presenilin 1 that underlie the development of a prion disorder and of familial Alzheimer's disease (fAD), respectively. These substitutions were found to prevent the endoplasmic reticulum (ER)-resident chaperone, cyclophilin B, from assisting presenilin 1 to fold properly, leading to its aggregation, deposition in the ER, reduction of γ-secretase activity, and impaired mitochondrial distribution and function. Similarly, reduced quantities of the processed, active presenilin 1 were observed in brains of cyclophilin B knockout mice. These discoveries imply that reduced cyclophilin activity contributes to the development of distinct neurodegenerative disorders, propose a novel mechanism for the development of certain fAD cases, and support the emerging theme that this disorder can stem from aberrant presenilin 1 function. This study also points at ER chaperones as targets for the development of counter-neurodegeneration therapies.


Assuntos
Doença de Alzheimer/metabolismo , Substituição de Aminoácidos , Encéfalo/metabolismo , Presenilina-1/metabolismo , Agregação Patológica de Proteínas/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Animais , Encéfalo/patologia , Linhagem Celular , Camundongos , Camundongos Knockout , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Presenilina-1/genética , Prolina/genética , Prolina/metabolismo , Agregação Patológica de Proteínas/genética , Agregação Patológica de Proteínas/patologia , Dobramento de Proteína
8.
Cell Commun Signal ; 17(1): 156, 2019 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-31775787

RESUMO

The numerous and diverse biological roles of Phosphatidylserine (PtdSer) are featured in this special issue. This review will focus on PtdSer as a cofactor required for stimulating TYRO3, AXL and MERTK - comprising the TAM family of receptor tyrosine kinases by their ligands Protein S (PROS1) and growth-arrest-specific 6 (GAS6) in inflammation and cancer. As PtdSer binding to TAMs is a requirement for their activation, the biological repertoire of PtdSer is now recognized to be broadened to include functions performed by TAMs. These include key homeostatic roles necessary for preserving a healthy steady state in different tissues, controlling inflammation and further additional roles in diseased states and cancer. The impact of PtdSer on inflammation and cancer through TAM signaling is a highly dynamic field of research. This review will focus on PtdSer as a necessary component of the TAM receptor-ligand complex, and for maximal TAM signaling. In particular, interactions between tumor cells and their immediate environment - the tumor microenvironment (TME) are highlighted, as both cancer cells and TME express TAMs and secrete their ligands, providing a nexus for a multifold of cross-signaling pathways which affects both immune cells and inflammation as well as tumor cell biology and growth. Here, we will highlight the current and emerging knowledge on the implications of PtdSer on TAM signaling, inflammation and cancer.


Assuntos
Inflamação/metabolismo , Neoplasias/metabolismo , Fosfatidilserinas/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Animais , Humanos , Transdução de Sinais , Microambiente Tumoral
9.
Stem Cells ; 35(3): 679-693, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27753164

RESUMO

Neurons are continuously produced in brains of adult mammalian organisms throughout life-a process tightly regulated to ensure a balanced homeostasis. In the adult brain, quiescent Neural Stem Cells (NSCs) residing in distinct niches engage in proliferation, to self-renew and to give rise to differentiated neurons and astrocytes. The mechanisms governing the intricate regulation of NSC quiescence and neuronal differentiation are not completely understood. Here, we report the expression of Protein S (PROS1) in adult NSCs, and show that genetic ablation of Pros1 in neural progenitors increased hippocampal NSC proliferation by 47%. We show that PROS1 regulates the balance of NSC quiescence and proliferation, also affecting daughter cell fate. We identified the PROS1-dependent downregulation of Notch1 signaling to correlate with NSC exit from quiescence. Notch1 and Hes5 mRNA levels were rescued by reintroducing Pros1 into NCS or by supplementation with purified PROS1, suggesting the regulation of Notch pathway by PROS1. Although Pros1-ablated NSCs show multilineage differentiation, we observed a 36% decrease in neurogenesis, coupled with a similar increase in astrogenesis, suggesting PROS1 is instructive for neurogenesis, and plays a role in fate determination, also seen in aged mice. Rescue experiments indicate PROS1 is secreted by NSCs and functions by a NSC-endogenous mechanism. Our study identifies a duple role for PROS1 in stem-cell quiescence and as a pro-neurogenic factor, and highlights a unique segregation of increased stem cell proliferation from enhanced neuronal differentiation, providing important insight into the regulation and control of NSC quiescence and differentiation. Stem Cells 2017;35:679-693.


Assuntos
Proteínas de Transporte/metabolismo , Ciclo Celular , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Neurogênese , Proteína S/metabolismo , Células-Tronco Adultas/citologia , Células-Tronco Adultas/metabolismo , Animais , Astrócitos/citologia , Astrócitos/metabolismo , Proteínas de Ligação ao Cálcio , Diferenciação Celular , Linhagem da Célula , Proliferação de Células , Deleção de Genes , Hipocampo/citologia , Camundongos , Receptores Notch/metabolismo , Transdução de Sinais
10.
Ophthalmic Res ; 55(3): 126-34, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26670885

RESUMO

PURPOSE: Conflicting data were reported with respect to the retinal phenotype of mice with dual perturbation of the CCL2 and CX3CR1 genes. We report the generation and retinal phenotype of mice with a reverse CCR2/CX3CL1 gene deficiency as a suggested model for age-related macular degeneration (AMD). METHODS: Crossing of single-deficient mice generated CCR2/CX3CL1 DKO mice. DKO mice were compared with age-matched C57BL6J mice. Evaluation included color fundus photographs, electroretinography (ERG), histology and morphometric analysis. Immunohistochemistry for CD11b in retinal cross-sections and retinal pigment epithelium (RPE)-choroid flat mounts was performed to assess microglia and macrophage recruitment. RESULTS: A minority of DKO mice showed yellowish subretinal deposits at 10 months. ERG recordings showed reduced cone sensitivity in young, but not older DKO mice. Compared to wild-type mice, DKO mice exhibited 11% reduction in the number of outer nuclear layer nuclei. Old DKO mice had an increased number of CD11b-positive cells across the retina, and on RPE-choroid flat mounts. CONCLUSIONS: In the absence of the rd8 allele, deficiency of CCR2 and CX3CL1 in mice leads to a mild form of retinal degeneration which is associated with the recruitment of macrophages, particularly to the subretinal space. This model enables to assess consequences of perturbed chemokine signaling, but it does not recapitulate cardinal AMD features.


Assuntos
Quimiocina CX3CL1/fisiologia , Receptores CCR2/fisiologia , Retina/fisiopatologia , Degeneração Retiniana/fisiopatologia , Animais , Quimiocina CX3CL1/deficiência , Quimiocina CX3CL1/genética , Cruzamentos Genéticos , Modelos Animais de Doenças , Eletrorretinografia , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia , Fenótipo , Receptores CCR2/deficiência , Receptores CCR2/genética , Retina/patologia , Degeneração Retiniana/genética , Degeneração Retiniana/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/fisiopatologia
11.
J Biol Chem ; 289(33): 22926-22941, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24947511

RESUMO

Host defense peptides play an important host-protective role by their microcidal action, immunomodulatory functions, and tissue repair activities. Proteolysis is a common strategy of pathogens used to neutralize host defense peptides. Here, we show that actin, the most abundant structural protein in eukaryotes, binds the LL-37 host defense peptide, protects it from degradation by the proteases of Pseudomonas aeruginosa and Porphyromonas gingivalis, and enables its antimicrobial activity despite the presence of the proteases. Co-localization of LL-37 with extracellular actin was observed in necrotized regions of samples from oral lesions. Competition assays, cross-linking experiments, limited proteolysis, and mass spectrometry revealed that LL-37 binds by specific hydrophobic interactions to the His-40-Lys-50 segment of actin, located in the DNase I binding loop. The integrity of the binding site of both LL-37 and actin is a prerequisite to the binding. Our results demonstrate that actin, presumably released by dead cells and abundant in infected sites, might be utilized by the immune system to enhance spatio-temporal immunity in an attempt to arrest infection and control inflammation.


Assuntos
Actinas , Peptídeos Catiônicos Antimicrobianos , Proteínas de Bactérias , Peptídeo Hidrolases , Porphyromonas gingivalis/enzimologia , Pseudomonas aeruginosa/enzimologia , Actinas/química , Actinas/metabolismo , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Infecções por Bacteroidaceae/metabolismo , Infecções por Bacteroidaceae/patologia , Feminino , Humanos , Masculino , Peptídeo Hidrolases/química , Peptídeo Hidrolases/metabolismo , Estrutura Secundária de Proteína , Proteólise , Infecções por Pseudomonas/metabolismo , Infecções por Pseudomonas/patologia , Catelicidinas
12.
Res Pract Thromb Haemost ; 8(4): 102432, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38854821

RESUMO

Here, we present a series of illustrated capsules from the State of the Art (SOA) speakers at the 2024 International Society on Thrombosis and Haemostasis Congress in Bangkok, Thailand. This year's Congress marks the first time that the International Society on Thrombosis and Haemostasis has held its flagship scientific meeting in Southeast Asia and is the first to be organized by an international Planning Committee. The Bangkok program will feature innovative science and clinical updates from around the world, reflecting the diversity and multidisciplinary growth of our field. In these illustrated SOA capsules, you will find an exploration of novel models of thrombosis and bleeding and biomaterial discoveries that can trigger or block coagulation. Thromboinflammation is now understood to drive many disease states, and the SOA speakers cover cellular and coagulation responses to COVID-19 and other infections. The theme of crosstalk between coagulation and inflammation expands with capsules on protein S signaling, complement, and fibrinolytic inhibitors. Novel agents for hemophilia and thrombosis prevention are introduced. Challenging clinical conditions are also covered, such as inherited platelet disorders and antiphospholipid antibody syndrome. The scientific program in Bangkok will also showcase the work of clinicians and scientists from all parts of the world and chronicle real-world challenges. For example, 2 SOA capsules address the diagnosis and management of von Willebrand disease in low-income settings. Take some time to browse through these short illustrated reviews; we're sure that you'll be entertained, educated, and inspired to further explore the world of thrombosis and hemostasis.

13.
Nat Metab ; 5(2): 207-218, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36732622

RESUMO

The retina is highly metabolically active, relying on glucose uptake and aerobic glycolysis. Situated in close contact to photoreceptors, a key function of cells in the retinal pigment epithelium (RPE) is phagocytosis of damaged photoreceptor outer segments (POS). Here we identify RPE as a local source of insulin in the eye that is stimulated by POS phagocytosis. We show that Ins2 messenger RNA and insulin protein are produced by RPE cells and that this production correlates with RPE phagocytosis of POS. Genetic deletion of phagocytic receptors ('loss of function') reduces Ins2, whereas increasing the levels of the phagocytic receptor MerTK ('gain of function') increases Ins2 production in male mice. Contrary to pancreas-derived systemic insulin, RPE-derived local insulin is stimulated during starvation, which also increases RPE phagocytosis. Global or RPE-specific Ins2 gene deletion decreases retinal glucose uptake in starved male mice, dysregulates retinal physiology, causes defects in phototransduction and exacerbates photoreceptor loss in a mouse model of retinitis pigmentosa. Collectively, these data identify RPE cells as a phagocytosis-induced local source of insulin in the retina, with the potential to influence retinal physiology and disease.


Assuntos
Insulina , Receptores Proteína Tirosina Quinases , Masculino , Camundongos , Animais , Receptores Proteína Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases/metabolismo , Insulina/metabolismo , Retina/metabolismo , Fagocitose/fisiologia , Glucose/metabolismo
14.
Nat Commun ; 13(1): 7689, 2022 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-36509738

RESUMO

The fine equilibrium of bone homeostasis is maintained by bone-forming osteoblasts and bone-resorbing osteoclasts. Here, we show that TAM receptors MERTK and TYRO3 exert reciprocal effects in osteoblast biology: Osteoblast-targeted deletion of MERTK promotes increased bone mass in healthy mice and mice with cancer-induced bone loss, whereas knockout of TYRO3 in osteoblasts shows the opposite phenotype. Functionally, the interaction of MERTK with its ligand PROS1 negatively regulates osteoblast differentiation via inducing the VAV2-RHOA-ROCK axis leading to increased cell contractility and motility while TYRO3 antagonizes this effect. Consequently, pharmacologic MERTK blockade by the small molecule inhibitor R992 increases osteoblast numbers and bone formation in mice. Furthermore, R992 counteracts cancer-induced bone loss, reduces bone metastasis and prolongs survival in preclinical models of multiple myeloma, breast- and lung cancer. In summary, MERTK and TYRO3 represent potent regulators of bone homeostasis with cell-type specific functions and MERTK blockade represents an osteoanabolic therapy with implications in cancer and beyond.


Assuntos
Proteínas Proto-Oncogênicas , Receptores Proteína Tirosina Quinases , Camundongos , Animais , c-Mer Tirosina Quinase/genética , c-Mer Tirosina Quinase/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Homeostase , Proteínas de Transporte
15.
Brain Plast ; 7(1): 33-46, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34631419

RESUMO

Tyro3, Axl and Mertk are members of the TAM family of tyrosine kinase receptors. TAMs are activated by two structurally homologous ligands GAS6 and PROS1. TAM receptors and ligands are widely distributed and often co-expressed in the same cells allowing diverse functions across many systems including the immune, reproductive, vascular, and the developing as well as adult nervous systems. This review will focus specifically on TAM signaling in the nervous system, highlighting the essential roles this pathway fulfills in maintaining cell survival and homeostasis, cellular functions such as phagocytosis, immunity and tissue repair. Dysfunctional TAM signaling can cause complications in development, disruptions in homeostasis which can rouse autoimmunity, neuroinflammation and neurodegeneration. The development of therapeutics modulating TAM activities in the nervous system has great prospects, however, foremost we need a complete understanding of TAM signaling pathways.

16.
J Clin Invest ; 131(10)2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-33848267

RESUMO

Stimulation of TAM (TYRO3, AXL, and MERTK) receptor tyrosine kinases promotes tumor progression through numerous cellular mechanisms. TAM cognate ligands GAS6 and PROS1 (for TYRO3 and MERTK) are secreted by host immune cells, an interaction which may support tumor progression. Here, we revealed an unexpected antimetastatic role for myeloid-derived PROS1: suppressing metastatic potential in lung and breast tumor models. Pros1 deletion in myeloid cells led to increased lung metastasis, independent of primary tumor infiltration. PROS1-cKO bone marrow-derived macrophages (BMDMs) led to elevated TNF-α, IL-6, Nos2, and IL-10 via modulation of the Socs3/NF-κB pathway. Conditioned medium from cKO BMDMs enhanced EMT, ERK, AKT, and STAT3 activation within tumor cells and promoted IL-10-dependent invasion and survival. Macrophages isolated from metastatic lungs modulated T cell proliferation and function, as well as expression of costimulatory molecules on DCs in a PROS1-dependent manner. Inhibition of MERTK kinase activity blocked PROS1-mediated suppression of TNF-α and IL-6 but not IL-10. Overall, using lung and breast cancer models, we identified the PROS1/MERTK axis within BMDMs as a potent regulator of adaptive immune responses with a potential to suppress metastatic seeding and revealed IL-10 regulation by PROS1 to deviate from that of TNF-α and IL-6.


Assuntos
Proteínas de Ligação ao Cálcio/imunologia , Interleucina-10/imunologia , Neoplasias Pulmonares/imunologia , Neoplasias Mamárias Experimentais/imunologia , Proteínas de Neoplasias/imunologia , Macrófagos Associados a Tumor/imunologia , Animais , Proteínas de Ligação ao Cálcio/genética , Feminino , Interleucina-10/genética , Interleucina-6/genética , Interleucina-6/imunologia , Neoplasias Pulmonares/genética , Neoplasias Mamárias Experimentais/genética , Camundongos , Metástase Neoplásica , Proteínas de Neoplasias/genética , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia
18.
Dev Cell ; 3(3): 383-95, 2002 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12361601

RESUMO

Delamination of premigratory neural crest cells from the dorsal neural tube depends both upon environmental signals and cell-intrinsic mechanisms and is a prerequisite for cells to engage in migration. Here we show that avian neural crest cells synchronously emigrate from the neural tube in the S phase of the cell cycle. Furthermore, specific inhibition of the transition from G1 to S both in ovo and in explants blocks delamination, whereas arrest at the S or G2 phases has no immediate effect. Thus, the events taking place during G1 that control the transition from G1 to S are necessary for the epithelial to mesenchymal conversion of crest precursors.


Assuntos
Crista Neural/embriologia , Animais , Antimetabólitos/farmacologia , Bromodesoxiuridina/farmacologia , Ciclo Celular/fisiologia , Diferenciação Celular , Movimento Celular , Núcleo Celular/fisiologia , Embrião de Galinha , Técnicas de Cultura , DNA/biossíntese , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Fase G1/fisiologia , Cinetina , Mimosina/farmacologia , Modelos Biológicos , Morfogênese , Proteína MyoD/química , Proteína MyoD/metabolismo , Crista Neural/citologia , Crista Neural/fisiologia , Purinas/farmacologia , Codorniz/embriologia , Fase S/fisiologia , Fatores de Transcrição/metabolismo , Tirfostinas/farmacologia
19.
Brain Behav Immun ; 23(7): 1003-13, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19501646

RESUMO

Brain atrophy and neuronal degeneration of unknown etiology are frequent and severe concomitants of the systemic autoimmune disease lupus erythematosus (SLE). Using the murine MRL/lpr model, we examined populations of proliferative brain cells during the development of SLE-like disease and brain atrophy. The disease onset was associated with reduced expression of Ki67 and BrdU proliferation markers in the dorsal part of the rostral migratory stream, enhanced Fluoro Jade C staining in the subgranular zone of the dentate gyrus, and paradoxical increase in density of Ki67(+)/BrdU(-) cells in the paraventricular nucleus. Protuberances containing clusters of BrdU(+) cells were frequent along the lateral ventricles and in some cases were bridging ventricular walls. Cells infiltrating the choroid plexus were Ki67(+)/BrdU(+), suggesting proliferative leukocytosis in this cerebrospinal fluid-producing organ. The above results further support the hypothesis that systemic autoimmune disease induces complex CNS pathology, including impaired neurogenesis in the hippocampus. Moreover, changes in the paraventricular nucleus implicate a metabolic dysfunction in the hypothalamus-pituitary-adrenal axis, which may account for altered hormonal status and psychiatric manifestations in SLE.


Assuntos
Encéfalo/patologia , Encéfalo/fisiopatologia , Proliferação de Células , Lúpus Eritematoso Sistêmico/fisiopatologia , Neurônios/patologia , Fatores Etários , Análise de Variância , Animais , Atrofia , Peso Corporal , Encéfalo/imunologia , Morte Celular , Movimento Celular , Imuno-Histoquímica , Lúpus Eritematoso Sistêmico/imunologia , Masculino , Camundongos , Camundongos Endogâmicos MRL lpr , Degeneração Neural/imunologia , Degeneração Neural/patologia , Neurônios/imunologia , Tamanho do Órgão , Especificidade da Espécie
20.
Mol Cancer Ther ; 18(2): 278-288, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30482852

RESUMO

Molecularly-targeted agents have improved outcomes for a subset of patients with BRAF-mutated melanoma, but treatment of resistant and BRAF wild-type tumors remains a challenge. The MERTK receptor tyrosine kinase is aberrantly expressed in melanoma and can contribute to oncogenic phenotypes. Here we report the effect of treatment with a MERTK-selective small molecule inhibitor, UNC2025, in preclinical models of melanoma. In melanoma cell lines, treatment with UNC2025 potently inhibited phosphorylation of MERTK and downstream signaling, induced cell death, and decreased colony formation. In patient-derived melanoma xenograft models, treatment with UNC2025 blocked or significantly reduced tumor growth. Importantly, UNC2025 had similar biochemical and functional effects in both BRAF-mutated and BRAF wild-type models and irrespective of NRAS mutational status, implicating MERTK inhibition as a potential therapeutic strategy in tumors that are not amenable to BRAF-targeting and for which there are limited treatment options. In BRAF-mutated cell lines, combined treatment with UNC2025 and the BRAF inhibitor vemurafenib provided effective inhibition of oncogenic signaling through ERK, AKT, and STAT6, increased induction of cell death, and decreased colony-forming potential. Similarly, in NRAS-mutated cell lines, addition of UNC2025 to cobimetinib therapy increased cell death and decreased colony-forming potential. In a BRAF-mutated patient-derived xenograft, treatment with combined UNC2025 and vemurafenib was well-tolerated and significantly decreased tumor growth compared with vemurafenib alone. These data support the use of UNC2025 for treatment of melanoma, irrespective of BRAF or NRAS mutational status, and suggest a role for MERTK and targeted combination therapy in BRAF and NRAS-mutated melanoma.


Assuntos
Adenina/análogos & derivados , Melanoma/tratamento farmacológico , Mutação , Piperazinas/administração & dosagem , Proteínas Proto-Oncogênicas B-raf/genética , c-Mer Tirosina Quinase/metabolismo , Adenina/administração & dosagem , Adenina/farmacologia , Animais , Azetidinas/administração & dosagem , Azetidinas/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sinergismo Farmacológico , Feminino , GTP Fosfo-Hidrolases/genética , Humanos , Melanoma/genética , Melanoma/metabolismo , Proteínas de Membrana/genética , Camundongos , Fosforilação/efeitos dos fármacos , Piperazinas/farmacologia , Piperidinas/administração & dosagem , Piperidinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Vemurafenib/administração & dosagem , Vemurafenib/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA