Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Brain ; 146(4): 1373-1387, 2023 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-36200388

RESUMO

The corpus callosum is a bundle of axon fibres that connects the two hemispheres of the brain. Neurodevelopmental disorders that feature dysgenesis of the corpus callosum as a core phenotype offer a valuable window into pathology derived from abnormal axon development. Here, we describe a cohort of eight patients with a neurodevelopmental disorder characterized by a range of deficits including corpus callosum abnormalities, developmental delay, intellectual disability, epilepsy and autistic features. Each patient harboured a distinct de novo variant in MYCBP2, a gene encoding an atypical really interesting new gene (RING) ubiquitin ligase and signalling hub with evolutionarily conserved functions in axon development. We used CRISPR/Cas9 gene editing to introduce disease-associated variants into conserved residues in the Caenorhabditis elegans MYCBP2 orthologue, RPM-1, and evaluated functional outcomes in vivo. Consistent with variable phenotypes in patients with MYCBP2 variants, C. elegans carrying the corresponding human mutations in rpm-1 displayed axonal and behavioural abnormalities including altered habituation. Furthermore, abnormal axonal accumulation of the autophagy marker LGG-1/LC3 occurred in variants that affect RPM-1 ubiquitin ligase activity. Functional genetic outcomes from anatomical, cell biological and behavioural readouts indicate that MYCBP2 variants are likely to result in loss of function. Collectively, our results from multiple human patients and CRISPR gene editing with an in vivo animal model support a direct link between MYCBP2 and a human neurodevelopmental spectrum disorder that we term, MYCBP2-related developmental delay with corpus callosum defects (MDCD).


Assuntos
Proteínas de Caenorhabditis elegans , Deficiência Intelectual , Animais , Humanos , Corpo Caloso/patologia , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Deficiência Intelectual/genética , Fenótipo , Ligases/genética , Ubiquitinas/genética , Agenesia do Corpo Caloso/genética , Agenesia do Corpo Caloso/patologia , Ubiquitina-Proteína Ligases/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo
2.
Am J Hum Genet ; 104(1): 179-185, 2019 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-30595371

RESUMO

Accumulation of unfolded proteins in the endoplasmic reticulum (ER) initiates a stress response mechanism to clear out the unfolded proteins by either facilitating their re-folding or inducing their degradation. When this fails, an apoptotic cascade is initiated so that the affected cell is eliminated. IRE1α is a critical sensor of the unfolded-protein response, essential for initiating the apoptotic signaling. Here, we report an infantile neurodegenerative disorder associated with enhanced activation of IRE1α and increased apoptosis. Three unrelated affected individuals with congenital microcephaly, infantile epileptic encephalopathy, and profound developmental delay were found to carry heterozygous variants (c.932T>C [p.Leu311Ser] or c.935T>C [p.Leu312Pro]) in RNF13, which codes for an IRE1α-interacting protein. Structural modeling predicted that the variants, located on the surface of the protein, would not alter overall protein folding. Accordingly, the abundance of RNF13 and IRE1α was not altered in affected individuals' cells. However, both IRE1α-mediated stress signaling and stress-induced apoptosis were increased in affected individuals' cells. These results indicate that the RNF13 variants confer gain of function to the encoded protein and thereby lead to altered signaling of the ER stress response associated with severe neurodegeneration in infancy.


Assuntos
Cegueira/congênito , Cegueira/genética , Insuficiência de Crescimento/genética , Mutação com Ganho de Função , Heterozigoto , Microcefalia/genética , Espasmos Infantis/genética , Ubiquitina-Proteína Ligases/genética , Sequência de Aminoácidos , Apoptose , Criança , Pré-Escolar , Deficiências do Desenvolvimento/genética , Estresse do Retículo Endoplasmático , Humanos , Lactente , Masculino , Modelos Moleculares , Espasmos Infantis/congênito , Ubiquitina-Proteína Ligases/química , Resposta a Proteínas não Dobradas
3.
Hum Mutat ; 40(7): 908-925, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30817854

RESUMO

Pathogenic de novo variants in the X-linked gene SLC35A2 encoding the major Golgi-localized UDP-galactose transporter required for proper protein and lipid glycosylation cause a rare type of congenital disorder of glycosylation known as SLC35A2-congenital disorders of glycosylation (CDG; formerly CDG-IIm). To date, 29 unique de novo variants from 32 unrelated individuals have been described in the literature. The majority of affected individuals are primarily characterized by varying degrees of neurological impairments with or without skeletal abnormalities. Surprisingly, most affected individuals do not show abnormalities in serum transferrin N-glycosylation, a common biomarker for most types of CDG. Here we present data characterizing 30 individuals and add 26 new variants, the single largest study involving SLC35A2-CDG. The great majority of these individuals had normal transferrin glycosylation. In addition, expanding the molecular and clinical spectrum of this rare disorder, we developed a robust and reliable biochemical assay to assess SLC35A2-dependent UDP-galactose transport activity in primary fibroblasts. Finally, we show that transport activity is directly correlated to the ratio of wild-type to mutant alleles in fibroblasts from affected individuals.


Assuntos
Defeitos Congênitos da Glicosilação/genética , Proteínas de Transporte de Monossacarídeos/genética , Proteínas de Transporte de Monossacarídeos/metabolismo , Uridina Difosfato Galactose/metabolismo , Animais , Biópsia , Células CHO , Células Cultivadas , Defeitos Congênitos da Glicosilação/metabolismo , Defeitos Congênitos da Glicosilação/patologia , Cricetulus , Feminino , Humanos , Masculino , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA