Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(14): 10520-10529, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38512292

RESUMO

In this paper we investigate the relationship between the conductivity effective mass and exfoliation energy of materials to assess whether automatic sampling of the electron band structure can predict the presence of and ease of separating chemically bonded layers. We assess 22 976 materials from the Materials Project database, screen for only those that are thermodynamically stable and identify the 1000 materials with the highest standard deviation for p-type and the 1000 materials with the highest standard deviation for n-type internal conductivity effective mass tensors. We calculate the exfoliation energy of these 2000 materials and report on the correlation between effective mass and exfoliation energy. A relationship is found which is used to identify a previously unconsidered two-dimensional material and could streamline the modelling of other two-dimensional materials in the future.

2.
Phys Chem Chem Phys ; 24(15): 8854-8858, 2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35356953

RESUMO

Electrides have valence electrons that occupy free space in the crystal structure, making them easier to extract. This feature can be used in catalysis for important reactions that usually require a high-temperature and high-pressure environments, such as ammonia synthesis. In this paper, we use density functional theory to investigate the behaviour of interstitial electrons of the 1-dimensional electride Sr3CrN3. We find that the bulk excess electron density persists on introduction of surface terminations, that the crystal termination perpendicular to the 1D free-electron channel is highly stable and we confirm an extremely low work function with hybrid functional methods. Our results indicate that Sr3CrN3 is a potentially important novel catalyst, with accessible, directional and extractable free electron density.

3.
J Am Chem Soc ; 141(27): 10595-10598, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31251610

RESUMO

Electrides are ionic crystals in which the electrons prefer to occupy free space, serving as anions. Because the electrons prefer to be in the pockets, channels, or layers to the atomic orbitals around the nuclei, it has been challenging to find electrides with partially filled d-shell transition metals, since an unoccupied d-shell provides an energetically favorable location for the electrons to occupy. We recently predicted the existence of electrides with partially filled d-shells using high-throughput computational screening. Here, we provide experimental support using X-ray absorption spectroscopy and X-ray and neutron diffraction to show that Sr3CrN3 is indeed an electride despite its partial d-shell configuration. Our findings indicate that Sr3CrN3 is the first known electride with a partially filled d-shell transition metal, in agreement with theory, which significantly broadens the criteria for the search for new electride materials.

4.
Phys Chem Chem Phys ; 19(19): 12452-12465, 2017 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-28470289

RESUMO

We present an in-depth first-principles study of the lattice dynamics of the tin sulphides SnS2, Pnma and π-cubic SnS and Sn2S3. An analysis of the harmonic phonon dispersion and vibrational density of states reveals phonon bandgaps between low- and high-frequency modes consisting of Sn and S motion, respectively, and evidences a bond-strength hierarchy in the low-dimensional SnS2, Pnma SnS and Sn2S3 crystals. We model and perform a complete characterisation of the infrared and Raman spectra, including temperature-dependent anharmonic linewidths calculated using many-body perturbation theory. We illustrate how vibrational spectroscopy could be used to identify and characterise phase impurities in tin sulphide samples. The spectral linewidths are used to model the thermal transport, and the calculations indicate that the low-dimensional Sn2S3 has a very low lattice thermal conductivity, potentially giving it superior performance to SnS as a candidate thermoelectric material.

5.
Phys Rev Lett ; 117(7): 075502, 2016 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-27563974

RESUMO

The layered semiconductor SnSe is one of the highest-performing thermoelectric materials known. We demonstrate, through a first-principles lattice-dynamics study, that the high-temperature Cmcm phase is a dynamic average over lower-symmetry minima separated by very small energetic barriers. Compared to the low-temperature Pnma phase, the Cmcm phase displays a phonon softening and enhanced three-phonon scattering, leading to an anharmonic damping of the low-frequency modes and hence the thermal transport. We develop a renormalization scheme to quantify the effect of the soft modes on the calculated properties, and confirm that the anharmonicity is an inherent feature of the Cmcm phase. These results suggest a design concept for thermal insulators and thermoelectric materials, based on displacive instabilities, and highlight the power of lattice-dynamics calculations for materials characterization.

6.
ACS Appl Mater Interfaces ; 12(44): 49805-49811, 2020 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-33105078

RESUMO

We construct LaN-based artificial superlattices to investigate the ferroelectricity and piezoelectricity using the volume matching conditions of the parent components that soften the elastic constant C33 and increase the piezoelectric modulus d33. The proposed superlattice consists of LaN and YN (or LaN and ScN) buckled monolayers alternately arranged along the crystallographic c-direction. The structure of polar wurtzite (w-LaYN/w-LaScN) is both mechanically and dynamically stable, and the computed energy barrier makes the ferroelectric polarization switching possible. We show that the epitaxial strain can modify the spontaneous ferroelectric polarization as well as d33. The LaN/YN superlattice exhibits a huge piezoelectric response in the unstrained state, due to their small c/a value and extremely soft C33. In addition, the epitaxial strain is revealed as effective control of the nature (indirect and direct) and value of the electronic band gap.

7.
J Phys Chem Lett ; 11(19): 8264-8267, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32852211

RESUMO

Oxidation states are well-established in chemical science teaching and research. We data-mine more than 168 000 crystallographic reports to find an optimal allocation of oxidation states to each element. In doing so, we uncover discrepancies between textbook chemistry and reported charge states observed in materials. We go on to show how the oxidation states we recommend can significantly facilitate materials discovery and the heuristic design of novel inorganic compounds.

8.
Chem Mater ; 31(10): 3672-3685, 2019 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-32063672

RESUMO

The tin sulfides and selenides have a range of applications spanning photovoltaics and thermoelectrics to photocatalysts and photodetectors. However, significant challenges remain to widespread use, including electrical and chemical incompatibilities between SnS and device contact materials and the environmental toxicity of selenium. Solid solutions of isostructural sulfide and selenide phases could provide scope for optimizing physical properties against sustainability requirements, but this has not been comprehensively explored. This work presents a detailed modeling study of the Pnma and rocksalt Sn(S1-x Se x ), Sn(S1-x Se x )2, and Sn2(S1-x Se x )3 solid solutions. All four show an energetically favorable and homogenous mixing at all compositions, but rocksalt Sn(S1-x Se x ) and Sn2(S1-x Se x )3 are predicted to be metastable and accessible only under certain synthesis conditions. Alloying leads to a predictable variation of the bandgap, density of states, and optical properties with composition, allowing SnS2 to be "tuned down" to the ideal Shockley-Queisser bandgap of 1.34 eV. The impact of forming the solid solutions on the lattice dynamics is also investigated, providing insight into the enhanced performance of Sn(S1-x Se x ) solid solutions for thermoelectric applications. These results demonstrate that alloying affords facile and precise control over the electronic, optical, and vibrational properties, allowing material performance for optoelectronic applications to be optimized alongside a variety of practical considerations.

9.
J Phys Chem C Nanomater Interfaces ; 121(12): 6446-6454, 2017 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-28652889

RESUMO

The tin sulfides represent a materials platform for earth-abundant semiconductor technologies. We present a first-principles study of the five known and proposed phases of SnS together with SnS2 and Sn2S3. Lattice-dynamics techniques are used to evaluate the dynamical stability and temperature-dependent thermodynamic free energy, and we also consider the effect of dispersion forces on the energetics. The recently identified π-cubic phase of SnS is found to be metastable with respect to the well-known orthorhombic Pnma/Cmcm equilibrium. The Cmcm phase is a low-lying saddle point between Pnma local minima on the potential-energy surface and is observed as an average structure at high temperatures. Bulk rocksalt and zincblende phases are found to be dynamically unstable, and we show that whereas rocksalt SnS can potentially be stabilized under a reduction of the lattice constant the hypothetical zincblende phase proposed in several previous studies is extremely unlikely to form. We also investigate the stability of Sn2S3 with respect to SnS and SnS2 and find that both dispersion forces and vibrational contributions to the free energy are required to explain its experimentally observed resistance to decomposition.

10.
Nat Commun ; 7: 11962, 2016 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-27325228

RESUMO

Nitride semiconductors are attractive because they can be environmentally benign, comprised of abundant elements and possess favourable electronic properties. However, those currently commercialized are mostly limited to gallium nitride and its alloys, despite the rich composition space of nitrides. Here we report the screening of ternary zinc nitride semiconductors using first-principles calculations of electronic structure, stability and dopability. This approach identifies as-yet-unreported CaZn2N2 that has earth-abundant components, smaller carrier effective masses than gallium nitride and a tunable direct bandgap suited for light emission and harvesting. High-pressure synthesis realizes this phase, verifying the predicted crystal structure and band-edge red photoluminescence. In total, we propose 21 promising systems, including Ca2ZnN2, Ba2ZnN2 and Zn2PN3, which have not been reported as semiconductors previously. Given the variety in bandgaps of the identified compounds, the present study expands the potential suitability of nitride semiconductors for a broader range of electronic, optoelectronic and photovoltaic applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA