Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Pediatr Res ; 91(6): 1374-1382, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-33947997

RESUMO

BACKGROUND: Cerebral autoregulation mechanisms help maintain adequate cerebral blood flow (CBF) despite changes in cerebral perfusion pressure. Impairment of cerebral autoregulation, during and after cardiopulmonary bypass (CPB), may increase risk of neurologic injury in neonates undergoing surgery. In this study, alterations of cerebral autoregulation were assessed in a neonatal swine model probing four perfusion strategies. METHODS: Neonatal swine (n = 25) were randomized to continuous deep hypothermic cardiopulmonary bypass (DH-CPB, n = 7), deep hypothermic circulatory arrest (DHCA, n = 7), selective cerebral perfusion (SCP, n = 7) at deep hypothermia, or normothermic cardiopulmonary bypass (control, n = 4). The correlation coefficient (LDx) between laser Doppler measurements of CBF and mean arterial blood pressure was computed at initiation and conclusion of CPB. Alterations in cerebral autoregulation were assessed by the change between initial and final LDx measurements. RESULTS: Cerebral autoregulation became more impaired (LDx increased) in piglets that underwent DH-CPB (initial LDx: median 0.15, IQR [0.03, 0.26]; final: 0.45, [0.27, 0.74]; p = 0.02). LDx was not altered in those undergoing DHCA (p > 0.99) or SCP (p = 0.13). These differences were not explained by other risk factors. CONCLUSIONS: In a validated swine model of cardiac surgery, DH-CPB had a significant effect on cerebral autoregulation, whereas DHCA and SCP did not. IMPACT: Approximately half of the patients who survive neonatal heart surgery with cardiopulmonary bypass (CPB) experience neurodevelopmental delays. This preclinical investigation takes steps to elucidate and isolate potential perioperative risk factors of neurologic injury, such as impairment of cerebral autoregulation, associated with cardiac surgical procedures involving CPB. We demonstrate a method to characterize cerebral autoregulation during CPB pump flow changes in a neonatal swine model of cardiac surgery. Cerebral autoregulation was not altered in piglets that underwent deep hypothermic circulatory arrest (DHCA) or selective cerebral perfusion (SCP), but it was altered in piglets that underwent deep hypothermic CBP.


Assuntos
Ponte Cardiopulmonar , Hipotermia Induzida , Animais , Animais Recém-Nascidos , Ponte Cardiopulmonar/efeitos adversos , Circulação Cerebrovascular , Homeostase , Suínos
2.
BMC Neurol ; 21(1): 154, 2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33836684

RESUMO

BACKGROUND: The cortical microvascular cerebral blood flow response (CBF) to different changes in head-of-bed (HOB) position has been shown to be altered in acute ischemic stroke (AIS) by diffuse correlation spectroscopy (DCS) technique. However, the relationship between these relative ΔCBF changes and associated systemic blood pressure changes has not been studied, even though blood pressure is a major driver of cerebral blood flow. METHODS: Transcranial DCS data from four studies measuring bilateral frontal microvascular cerebral blood flow in healthy controls (n = 15), patients with asymptomatic severe internal carotid artery stenosis (ICA, n = 27), and patients with acute ischemic stroke (AIS, n = 72) were aggregated. DCS-measured CBF was measured in response to a short head-of-bed (HOB) position manipulation protocol (supine/elevated/supine, 5 min at each position). In a sub-group (AIS, n = 26; ICA, n = 14; control, n = 15), mean arterial pressure (MAP) was measured dynamically during the protocol. RESULTS: After elevated positioning, DCS CBF returned to baseline supine values in controls (p = 0.890) but not in patients with AIS (9.6% [6.0,13.3], mean 95% CI, p < 0.001) or ICA stenosis (8.6% [3.1,14.0], p = 0.003)). MAP in AIS patients did not return to baseline values (2.6 mmHg [0.5, 4.7], p = 0.018), but in ICA stenosis patients and controls did. Instead ipsilesional but not contralesional CBF was correlated with MAP (AIS 6.0%/mmHg [- 2.4,14.3], p = 0.038; ICA stenosis 11.0%/mmHg [2.4,19.5], p < 0.001). CONCLUSIONS: The observed associations between ipsilateral CBF and MAP suggest that short HOB position changes may elicit deficits in cerebral autoregulation in cerebrovascular disorders. Additional research is required to further characterize this phenomenon.


Assuntos
Pressão Arterial , Estenose das Carótidas/fisiopatologia , Circulação Cerebrovascular , AVC Isquêmico/fisiopatologia , Decúbito Dorsal/fisiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Velocidade do Fluxo Sanguíneo/fisiologia , Pressão Sanguínea , Isquemia Encefálica/fisiopatologia , Estudos de Casos e Controles , Feminino , Decúbito Inclinado com Rebaixamento da Cabeça/fisiologia , Hemodinâmica , Homeostase , Humanos , Masculino , Pessoa de Meia-Idade , Acidente Vascular Cerebral/fisiopatologia
3.
Sensors (Basel) ; 21(21)2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34770264

RESUMO

Despite the wide range of clinical and research applications, the reliability of the absolute oxygenation measurements of continuous wave near-infrared spectroscopy sensors is often questioned, partially due to issues of standardization. In this study, we have compared the performances of 13 units of a continuous wave near-infrared spectroscopy device (PortaMon, Artinis Medical Systems, NL) to test their suitability for being used in the HEMOCOVID-19 clinical trial in 10 medical centers around the world. Detailed phantom and in vivo tests were employed to measure the precision and reproducibility of measurements of local blood oxygen saturation and total hemoglobin concentration under different conditions: for different devices used, different operators, for probe repositioning over the same location, and over time (hours/days/months). We have detected systematic differences between devices when measuring phantoms (inter-device variability, <4%), which were larger than the intra-device variability (<1%). This intrinsic variability is in addition to the variability during in vivo measurements on the forearm muscle resulting from errors in probe positioning and intrinsic physiological noise (<9%), which was also larger than the inter-device differences (<3%) during the same test. Lastly, we have tested the reproducibility of the protocol of the HEMOCOVID-19 clinical trial; that is, forearm muscle oxygenation monitoring during vascular occlusion tests over days. Overall, our conclusion is that these devices can be used in multi-center trials but care must be taken to characterize, follow-up, and statistically account for inter-device variability.


Assuntos
Oximetria , Espectroscopia de Luz Próxima ao Infravermelho , Oxigênio , Consumo de Oxigênio , Reprodutibilidade dos Testes
4.
Pediatr Res ; 88(6): 925-933, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32172282

RESUMO

BACKGROUND: Extra-corporeal membrane oxygenation (ECMO) is a life-saving intervention for severe respiratory and cardiac diseases. However, 50% of survivors have abnormal neurologic exams. Current ECMO management is guided by systemic metrics, which may poorly predict cerebral perfusion. Continuous optical monitoring of cerebral hemodynamics during ECMO holds potential to detect risk factors of brain injury such as impaired cerebrovascular autoregulation (CA). METHODS: We conducted daily measurements of microvascular cerebral blood flow (CBF), oxygen saturation, and total hemoglobin concentration using diffuse correlation spectroscopy (DCS) and frequency-domain diffuse optical spectroscopy in nine neonates. We characterize CA utilizing the correlation coefficient (DCSx) between CBF and mean arterial blood pressure (MAP) during ECMO pump flow changes. RESULTS: Average MAP and pump flow levels were weakly correlated with CBF and were not correlated with cerebral oxygen saturation. CA integrity varied between individuals and with time. Systemic measurements of MAP, pulse pressure, and left cardiac dysfunction were not predictive of impaired CA. CONCLUSIONS: Our pilot results suggest that systemic measures alone cannot distinguish impaired CA from intact CA during ECMO. Furthermore, optical neuromonitoring could help determine patient-specific ECMO pump flows for optimal CA integrity, thereby reducing risk of secondary brain injury. IMPACT: Cerebral blood flow and oxygenation are not well predicted by systemic proxies such as ECMO pump flow or blood pressure. Continuous, quantitative, bedside monitoring of cerebral blood flow and oxygenation with optical tools enables new insight into the adequacy of cerebral perfusion during ECMO. A demonstration of hybrid diffuse optical and correlation spectroscopies to continuously measure cerebral blood oxygen saturation and flow in patients on ECMO, enabling assessment of cerebral autoregulation. An observation of poor correlation of cerebral blood flow and oxygenation with systemic mean arterial pressure and ECMO pump flow, suggesting that clinical decision making guided by target values for these surrogates may not be neuroprotective. ~50% of ECMO survivors have long-term neurological deficiencies; continuous monitoring of brain health throughout therapy may reduce these tragically common sequelae through brain-focused adjustment of ECMO parameters.


Assuntos
Encéfalo/fisiopatologia , Circulação Cerebrovascular , Oxigenação por Membrana Extracorpórea/métodos , Hemodinâmica , Microcirculação , Oxigênio/metabolismo , Pressão Sanguínea , Lesões Encefálicas/fisiopatologia , Homeostase/fisiologia , Humanos , Projetos Piloto , Reprodutibilidade dos Testes , Risco , Fatores de Risco , Espalhamento de Radiação , Espectrofotometria , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Resultado do Tratamento
5.
Neurocrit Care ; 30(1): 72-80, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30030667

RESUMO

BACKGROUND: Diffuse correlation spectroscopy (DCS) noninvasively permits continuous, quantitative, bedside measurements of cerebral blood flow (CBF). To test whether optical monitoring (OM) can detect decrements in CBF producing cerebral hypoxia, we applied the OM technique continuously to probe brain-injured patients who also had invasive brain tissue oxygen (PbO2) monitors. METHODS: Comatose patients with a Glasgow Coma Score (GCS) < 8) were enrolled in an IRB-approved protocol after obtaining informed consent from the legally authorized representative. Patients underwent 6-8 h of daily monitoring. Brain PbO2 was measured with a Clark electrode. Absolute CBF was monitored with DCS, calibrated by perfusion measurements based on intravenous indocyanine green bolus administration. Variation of optical CBF and mean arterial pressure (MAP) from baseline was measured during periods of brain hypoxia (defined as a drop in PbO2 below 19 mmHg for more than 6 min from baseline (PbO2 > 21 mmHg). In a secondary analysis, we compared optical CBF and MAP during randomly selected 12-min periods of "normal" (> 21 mmHg) and "low" (< 19 mmHg) PbO2. Receiver operator characteristic (ROC) and logistic regression analysis were employed to assess the utility of optical CBF, MAP, and the two-variable combination, for discrimination of brain hypoxia from normal brain oxygen tension. RESULTS: Seven patients were enrolled and monitored for a total of 17 days. Baseline-normalized MAP and CBF significantly decreased during brain hypoxia events (p < 0.05). Through use of randomly selected, temporally sparse windows of low and high PbO2, we observed that both MAP and optical CBF discriminated between periods of brain hypoxia and normal brain oxygen tension (ROC AUC 0.761, 0.762, respectively). Further, combining these variables using logistic regression analysis markedly improved the ability to distinguish low- and high-PbO2 epochs (AUC 0.876). CONCLUSIONS: The data suggest optical techniques may be able to provide continuous individualized CBF measurement to indicate occurrence of brain hypoxia and guide brain-directed therapy.


Assuntos
Pressão Arterial/fisiologia , Circulação Cerebrovascular/fisiologia , Hipóxia-Isquemia Encefálica/diagnóstico por imagem , Hipóxia-Isquemia Encefálica/fisiopatologia , Monitorização Neurofisiológica/métodos , Adulto , Lesões Encefálicas/diagnóstico por imagem , Lesões Encefálicas/fisiopatologia , Coma/diagnóstico por imagem , Coma/fisiopatologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neuroimagem/métodos , Neuroimagem/normas , Monitorização Neurofisiológica/normas , Imagem Óptica/métodos , Imagem Óptica/normas , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Espectroscopia de Luz Próxima ao Infravermelho/normas
6.
Breast Cancer Res ; 17: 72, 2015 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-26013572

RESUMO

INTRODUCTION: Non-invasive diffuse optical tomography (DOT) and diffuse correlation spectroscopy (DCS) can detect and characterize breast cancer and predict tumor responses to neoadjuvant chemotherapy, even in patients with radiographically dense breasts. However, the relationship between measured optical parameters and pathological biomarker information needs to be further studied to connect information from optics to traditional clinical cancer biology. Thus we investigate how optically measured physiological parameters in malignant tumors such as oxy-, deoxy-hemoglobin concentration, tissue blood oxygenation, and metabolic rate of oxygen correlate with microscopic histopathological biomarkers from the same malignant tumors, e.g., Ki67 proliferation markers, CD34 stained vasculature markers and nuclear morphology. METHODS: In this pilot study, we investigate correlations of macroscopic physiological parameters of malignant tumors measured by diffuse optical technologies with microscopic histopathological biomarkers of the same tumors, i.e., the Ki67 proliferation marker, the CD34 stained vascular properties marker, and nuclear morphology. RESULTS: The tumor-to-normal relative ratio of Ki67-positive nuclei is positively correlated with DOT-measured relative tissue blood oxygen saturation (R = 0.89, p-value: 0.001), and lower tumor-to-normal deoxy-hemoglobin concentration is associated with higher expression level of Ki67 nuclei (p-value: 0.01). In a subset of the Ki67-negative group (defined by the 15 % threshold), an inverse correlation between Ki67 expression level and mammary metabolic rate of oxygen was observed (R = -0.95, p-value: 0.014). Further, CD34 stained mean-vessel-area in tumor is positively correlated with tumor-to-normal total-hemoglobin and oxy-hemoglobin concentration. Finally, we find that cell nuclei tend to have more elongated shapes in less oxygenated DOT-measured environments. CONCLUSIONS: Collectively, the pilot data are consistent with the notion that increased blood is supplied to breast cancers, and it also suggests that less conversion of oxy- to deoxy-hemoglobin occurs in more proliferative cancers. Overall, the observations corroborate expectations that macroscopic measurements of breast cancer physiology using DOT and DCS can reveal microscopic pathological properties of breast cancer and hold potential to complement pathological biomarker information.


Assuntos
Biomarcadores Tumorais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Neovascularização Patológica , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/tratamento farmacológico , Proliferação de Células , Feminino , Humanos , Antígeno Ki-67/metabolismo , Metabolômica/métodos , Microscopia de Fluorescência , Imagem Óptica/métodos , Consumo de Oxigênio , Projetos Piloto , Análise Espectral/métodos
7.
Pediatr Res ; 78(3): 304-9, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25996891

RESUMO

BACKGROUND: Currently two magnetic resonance imaging (MRI) methods have been used to assess periventricular leukomalacia (PVL) severity in infants with congenital heart disease: manual volumetric lesion segmentation and an observational categorical scale. Volumetric classification is labor intensive and the categorical scale is quick but unreliable. We propose the quartered point system (QPS) as a novel, intuitive, time-efficient metric with high interrater agreement. METHODS: QPS is an observational scale that asks the rater to score MRIs on the basis of lesion size, number, and distribution. Pre- and postoperative brain MRIs were obtained on term congenital heart disease infants. Three independent observers scored PVL severity using all three methods: volumetric segmentation, categorical scale, and QPS. RESULTS: One-hundred and thirty-five MRIs were obtained from 72 infants; PVL was seen in 48 MRIs. Volumetric measurements among the three raters were highly concordant (ρc = 0.94-0.96). Categorical scale severity scores were in poor agreement between observers (κ = 0.17) and fair agreement with volumetrically determined severity (κ = 0.26). QPS scores were in very good agreement between observers (κ = 0.82) and with volumetric severity (κ = 0.81). CONCLUSION: QPS minimizes training and sophisticated radiologic analysis and increases interrater reliability. QPS offers greater sensitivity to stratify PVL severity and has the potential to more accurately correlate with neurodevelopmental outcomes.


Assuntos
Cardiopatias Congênitas/fisiopatologia , Leucomalácia Periventricular/fisiopatologia , Imageamento por Ressonância Magnética , Encéfalo/patologia , Imagem de Difusão por Ressonância Magnética , Idade Gestacional , Cardiopatias Congênitas/complicações , Humanos , Recém-Nascido , Leucomalácia Periventricular/diagnóstico , Variações Dependentes do Observador , Período Pós-Operatório , Período Pré-Operatório , Reprodutibilidade dos Testes , Estudos Retrospectivos , Índice de Gravidade de Doença
9.
Crit Care Explor ; 6(5): e1089, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38728059

RESUMO

IMPORTANCE: Patients admitted with cerebral hemorrhage or cerebral edema often undergo external ventricular drain (EVD) placement to monitor and manage intracranial pressure (ICP). A strain gauge transducer accompanies the EVD to convert a pressure signal to an electrical waveform and assign a numeric value to the ICP. OBJECTIVES: This study explored ICP accuracy in the presence of blood and other viscous fluid contaminates in the transducer. DESIGN: Preclinical comparative design study. SETTING: Laboratory setting using two Natus EVDs, two strain gauge transducers, and a sealed pressure chamber. PARTICIPANTS: No human subjects or animal models were used. INTERVENTIONS: A control transducer primed with saline was compared with an investigational transducer primed with blood or with saline/glycerol mixtures in mass:mass ratios of 25%, 50%, 75%, and 100% glycerol. Volume in a sealed chamber was manipulated to reflect changes in ICP to explore the impact of contaminates on pressure measurement. MEASUREMENTS AND MAIN RESULTS: From 90 paired observations, ICP readings were statistically significantly different between the control (saline) and experimental (glycerol or blood) transducers. The time to a stable pressure reading was significantly different for saline vs. 25% glycerol (< 0.0005), 50% glycerol (< 0.005), 75% glycerol (< 0.0001), 100% glycerol (< 0.0005), and blood (< 0.0005). A difference in resting stable pressure was observed for saline vs. blood primed transducers (0.041). CONCLUSIONS AND RELEVANCE: There are statistically significant and clinically relevant differences in time to a stable pressure reading when contaminates are introduced into a closed drainage system. Changing a transducer based on the presence of blood contaminate should be considered to improve accuracy but must be weighed against the risk of introducing infection.


Assuntos
Pressão Intracraniana , Transdutores de Pressão , Pressão Intracraniana/fisiologia , Humanos , Sangue/metabolismo , Glicerol , Monitorização Fisiológica/instrumentação , Monitorização Fisiológica/métodos , Drenagem/instrumentação , Hemorragia Cerebral/fisiopatologia , Hemorragia Cerebral/diagnóstico
10.
ASAIO J ; 70(3): 167-176, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38051987

RESUMO

Extracorporeal membrane oxygenation (ECMO) is a form of temporary cardiopulmonary bypass for patients with acute respiratory or cardiac failure refractory to conventional therapy. Its usage has become increasingly widespread and while reported survival after ECMO has increased in the past 25 years, the incidence of neurological injury has not declined, leading to the pressing question of how to improve time-to-detection and diagnosis of neurological injury. The neurological status of patients on ECMO is clinically difficult to evaluate due to multiple factors including illness, sedation, and pharmacological paralysis. Thus, increasing attention has been focused on developing tools and techniques to measure and monitor the brain of ECMO patients to identify dynamic risk factors and monitor patients' neurophysiological state as a function in time. Such tools may guide neuroprotective interventions and thus prevent or mitigate brain injury. Current means to continuously monitor and prevent neurological injury in ECMO patients are rather limited; most techniques provide indirect or postinsult recognition of irreversible brain injury. This review will explore the indications, advantages, and disadvantages of standard-of-care, emerging, and investigational technologies for neurological monitoring on ECMO, focusing on bedside techniques that provide continuous assessment of neurological health.


Assuntos
Lesões Encefálicas , Oxigenação por Membrana Extracorpórea , Insuficiência Cardíaca , Insuficiência Respiratória , Adulto , Humanos , Criança , Oxigenação por Membrana Extracorpórea/efeitos adversos , Oxigenação por Membrana Extracorpórea/métodos , Insuficiência Cardíaca/etiologia , Encéfalo , Lesões Encefálicas/prevenção & controle , Lesões Encefálicas/etiologia , Insuficiência Respiratória/terapia , Estudos Retrospectivos
11.
ASAIO J ; 69(7): e315-e321, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37172001

RESUMO

Validation of a real-time monitoring device to evaluate the risk or occurrence of neurologic injury while on extracorporeal membrane oxygenation (ECMO) may aid clinicians in prevention and treatment. Therefore, we performed a pilot prospective cohort study of children under 18 years old on ECMO to analyze the association between cerebral blood pressure autoregulation as measured by diffuse correlation spectroscopy (DCS) and radiographic neurologic injury. DCS measurements of regional cerebral blood flow were collected on enrolled patients and correlated with mean arterial blood pressure to determine the cerebral autoregulation metric termed DCSx. The primary outcome of interest was radiographic neurologic injury on eligible computed tomography (CT) or magnetic resonance imaging (MRI) scored by a blinded pediatric neuroradiologist utilizing a previously validated scale. Higher DCSx scores, which indicate disruption of cerebral autoregulation, were associated with higher radiographic neurologic injury score (slope, 11.0; 95% confidence interval [CI], 0.29-22). Patients with clinically significant neurologic injury scores of 10 or more had higher median DCSx measures than patients with lower neurologic injury scores (0.48 vs . 0.13; p = 0.01). Our study indicates that obtaining noninvasive DCS measures for children on ECMO is feasible and disruption of cerebral autoregulation determined from DCS is associated with higher radiographic neurologic injury score.


Assuntos
Oxigenação por Membrana Extracorpórea , Humanos , Criança , Adolescente , Oxigenação por Membrana Extracorpórea/efeitos adversos , Oxigenação por Membrana Extracorpórea/métodos , Estudos Prospectivos , Projetos Piloto , Homeostase/fisiologia , Circulação Cerebrovascular/fisiologia
12.
J Clin Neurophysiol ; 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37934074

RESUMO

PURPOSE: The neurologic examination of patients undergoing extracorporeal membrane oxygenation (ECMO) is crucial for evaluating irreversible encephalopathy but is often obscured by sedation or neuromuscular blockade. Noninvasive neuromonitoring modalities including diffuse correlation spectroscopy and EEG measure cerebral perfusion and neuronal function, respectively. We hypothesized that encephalopathic ECMO patients with greater degree of irreversible cerebral injury demonstrate less correlation between electrographic activity and cerebral perfusion than those whose encephalopathy is attributable to medications. METHODS: We performed a prospective observational study of adults undergoing ECMO who underwent simultaneous continuous EEG and diffuse correlation spectroscopy monitoring. (Alpha + beta)/delta ratio and alpha/delta Rartio derived from quantitative EEG analysis were correlated with frontal cortical blood flow index. Patients who awakened and followed commands during sedation pauses were included in group 1, whereas patients who could not follow commands for most neuromonitoring were placed in group 2. (Alpha + beta)/delta ratio-blood flow index and ADR-BFI correlations were compared between the groups. RESULTS: Ten patients (five in each group) underwent 39 concomitant continuous EEG and diffuse correlation spectroscopy monitoring sessions. Four patients (80%) in each group received some form of analgosedation during neuromonitoring. (Alpha + beta)/delta ratio-blood flow index correlation was significantly lower in group 2 than group 1 (left: 0.05 vs. 0.52, P = 0.03; right: -0.12 vs. 0.39, P = 0.04). Group 2 ADR-BFI correlation was lower only over the right hemisphere (-0.06 vs. 0.47, P = 0.04). CONCLUSIONS: Correlation between (alpha + beta)/delta ratio and blood flow index were decreased in encephalopathic ECMO patients compared with awake ones, regardless of the analgosedation use. The combined use of EEG and diffuse correlation spectroscopy may have utility in monitoring cerebral function in ECMO patients.

13.
Semin Thorac Cardiovasc Surg ; 34(4): 1275-1284, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34508811

RESUMO

Cardiac surgery utilizing circulatory arrest is most commonly performed under deep hypothermia (∼18°C) to suppress tissue oxygen demand and provide neuroprotection during operative circulatory arrest. Studies investigating the effects of deep hypothermic circulatory arrest (DHCA) on neurodevelopmental outcomes of patients with congenital heart disease give conflicting results. Here, we address these issues by quantifying changes in cerebral oxygen saturation, blood flow, and oxygen metabolism in neonates during DHCA and investigating the association of these changes with postoperative brain injury. Neonates with critical congenital heart disease undergoing DHCA were recruited for continuous intraoperative monitoring of cerebral oxygen saturation (ScO2) and an index of cerebral blood flow (CBFi) using 2 noninvasive optical techniques, diffuse optical spectroscopy (DOS) and diffuse correlation spectroscopy (DCS). Pre- and postoperative brain magnetic resonance imaging (MRI) was performed to detect white matter injury (WMI). Fifteen neonates were studied, and 11/15 underwent brain MRI. During DHCA, ScO2 decreased exponentially in time with a median decay rate of -0.04 min-1. This decay rate was highly variable between subjects. Subjects who had larger decreases in ScO2 during DHCA were more likely to have postoperative WMI (P = 0.02). Cerebral oxygen extraction persists during DHCA and varies widely from patient-to-patient. Patients with a higher degree of oxygen extraction during DHCA were more likely to show new WMI in postoperative MRI. These findings suggest cerebral oxygen extraction should be monitored during DHCA to identify patients at risk for hypoxic-ischemic injury, and that current commercial cerebral oximeters may underestimate cerebral oxygen extraction.


Assuntos
Lesões Encefálicas , Parada Circulatória Induzida por Hipotermia Profunda , Recém-Nascido , Humanos , Parada Circulatória Induzida por Hipotermia Profunda/efeitos adversos , Resultado do Tratamento , Circulação Cerebrovascular , Encéfalo/diagnóstico por imagem , Lesões Encefálicas/diagnóstico por imagem , Lesões Encefálicas/etiologia , Oxigênio , Ponte Cardiopulmonar/efeitos adversos
14.
Nat Biomed Eng ; 6(9): 1017-1030, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35970929

RESUMO

Direct assessment of blood oxygenation in the human placenta can provide information about placental function. However, the monitoring of placental oxygenation involves invasive sampling or imaging techniques that are poorly suited for bedside use. Here we show that placental oxygen haemodynamics can be non-invasively probed in real time and up to 4.2 cm below the body surface via concurrent frequency-domain diffuse optical spectroscopy and ultrasound imaging. We developed a multimodal instrument to facilitate the assessment of the properties of the anterior placenta by leveraging image-reconstruction algorithms that integrate ultrasound information about the morphology of tissue layers with optical information on haemodynamics. In a pilot investigation involving placentas with normal function (15 women) or abnormal function (9 women) from pregnancies in the third trimester, we found no significant differences in baseline haemoglobin properties, but statistically significant differences in the haemodynamic responses to maternal hyperoxia. Our findings suggest that the non-invasive monitoring of placental oxygenation may aid the early detection of placenta-related adverse pregnancy outcomes and maternal vascular malperfusion.


Assuntos
Hiperóxia , Placenta , Feminino , Humanos , Hiperóxia/diagnóstico por imagem , Oxigênio , Placenta/irrigação sanguínea , Placenta/diagnóstico por imagem , Placenta/fisiologia , Gravidez , Análise Espectral , Ultrassonografia
15.
PLoS One ; 16(5): e0251271, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33970932

RESUMO

Spinal cord ischemia leads to iatrogenic injury in multiple surgical fields, and the ability to immediately identify onset and anatomic origin of ischemia is critical to its management. Current clinical monitoring, however, does not directly measure spinal cord blood flow, resulting in poor sensitivity/specificity, delayed alerts, and delayed intervention. We have developed an epidural device employing diffuse correlation spectroscopy (DCS) to monitor spinal cord ischemia continuously at multiple positions. We investigate the ability of this device to localize spinal cord ischemia in a porcine model and validate DCS versus Laser Doppler Flowmetry (LDF). Specifically, we demonstrate continuous (>0.1Hz) spatially resolved (3 locations) monitoring of spinal cord blood flow in a purely ischemic model with an epidural DCS probe. Changes in blood flow measured by DCS and LDF were highly correlated (r = 0.83). Spinal cord blood flow measured by DCS caudal to aortic occlusion decreased 62%. This monitor demonstrated a sensitivity of 0.87 and specificity of 0.91 for detection of a 25% decrease in flow. This technology may enable early identification and critically important localization of spinal cord ischemia.


Assuntos
Espaço Epidural/irrigação sanguínea , Isquemia do Cordão Espinal/diagnóstico , Medula Espinal/irrigação sanguínea , Animais , Hemodinâmica , Fluxometria por Laser-Doppler/métodos , Monitorização Intraoperatória/métodos , Fluxo Sanguíneo Regional , Isquemia do Cordão Espinal/cirurgia , Suínos
16.
J Biomed Opt ; 26(2)2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33624457

RESUMO

SIGNIFICANCE: Current imaging paradigms for differential diagnosis of suspicious breast lesions suffer from high false positive rates that force patients to undergo unnecessary biopsies. Diffuse optical spectroscopic imaging (DOSI) noninvasively probes functional hemodynamic and compositional parameters in deep tissue and has been shown to be sensitive to contrast between normal and malignant tissues. AIM: DOSI methods are under investigation as an adjunct to mammography and ultrasound that could reduce false positive rates and unnecessary biopsies, particularly in radiographically dense breasts. METHODS: We performed a retrospective analysis of 212 subjects with suspicious breast lesions who underwent DOSI imaging. Physiological tissue parameters were z-score normalized to the patient's contralateral breast tissue and input to univariate logistic regression models to discriminate between malignant tumors and the surrounding normal tissue. The models were then used to differentiate malignant lesions from benign lesions. RESULTS: Models incorporating several individual hemodynamic parameters were able to accurately distinguish malignant tumors from both the surrounding background tissue and benign lesions with area under the curve (AUC) ≥0.85. Z-score normalization improved the discriminatory ability and calibration of these predictive models relative to unnormalized or ratio-normalized data. CONCLUSIONS: Findings from a large subject population study show how DOSI data normalization that accounts for normal tissue heterogeneity and quantitative statistical regression approaches can be combined to improve the ability of DOSI to diagnose malignant lesions. This improved diagnostic accuracy, combined with the modality's inherent logistical advantages of portability, low cost, and nonionizing radiation, could position DOSI as an effective adjunct modality that could be used to reduce the number of unnecessary invasive biopsies.


Assuntos
Neoplasias da Mama , Mama/diagnóstico por imagem , Neoplasias da Mama/diagnóstico por imagem , Diagnóstico Diferencial , Feminino , Humanos , Mamografia , Estudos Retrospectivos , Análise Espectral
17.
Med Phys ; 37(4): 1840-9, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20443506

RESUMO

PURPOSE: Computer aided detection (CAD) data analysis procedures are introduced and applied to derive composite diffuse optical tomography (DOT) signatures of malignancy in human breast tissue. In contrast to previous optical mammography analysis schemes, the new statistical approach utilizes optical property distributions across multiple subjects and across the many voxels of each subject. The methodology is tested in a population of 35 biopsy-confirmed malignant lesions. METHODS: DOT CAD employs multiparameter, multivoxel, multisubject measurements to derive a simple function that transforms DOT images of tissue chromophores and scattering into a probability of malignancy tomogram. The formalism incorporates both intrasubject spatial heterogeneity and intersubject distributions of physiological properties derived from a population of cancercontaining breasts (the training set). A weighted combination of physiological parameters from the training set define a malignancy parameter (M), with the weighting factors optimized by logistic regression to separate training-set cancer voxels from training-set healthy voxels. The utility of M is examined, employing 3D DOT images from an additional subjects (the test set). RESULTS: Initial results confirm that the automated technique can produce tomograms that distinguish healthy from malignant tissue. When compared to a gold standard tissue segmentation, this protocol produced an average true positive rate (sensitivity) of 89% and a true negative rate (specificity) of 94% using an empirically chosen probability threshold. CONCLUSIONS: This study suggests that the automated multisubject, multivoxel, multiparameter statistical analysis of diffuse optical data is potentially quite useful, producing tomograms that distinguish healthy from malignant tissue. This type of data analysis may also prove useful for suppression of image artifacts.


Assuntos
Neoplasias da Mama/diagnóstico , Diagnóstico por Computador/métodos , Mamografia/métodos , Tomografia Óptica/métodos , Biópsia , Neoplasias da Mama/patologia , Feminino , Humanos , Óptica e Fotônica/métodos , Reconhecimento Automatizado de Padrão/métodos , Valor Preditivo dos Testes , Probabilidade , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Análise de Regressão , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
18.
Neurophotonics ; 7(4): 045008, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33163546

RESUMO

Significance: Speech processing tasks can be used to assess the integrity and health of many functional and structural aspects of the brain. Despite the potential merits of such behavioral tests as clinical assessment tools, however, the underlying neural substrates remain relatively unclear. Aim: We aimed to obtain a more in-depth portrait of hemispheric asymmetry during dichotic listening tasks at the level of the prefrontal cortex, where prior studies have reported inconsistent results. Approach: To avoid central confounds that limited previous studies, we used diffuse correlation spectroscopy to optically monitor cerebral blood flow (CBF) in the dorsolateral prefrontal cortex during dichotic listening tasks in human subjects. Results: We found that dichotic listening tasks elicited hemispheric asymmetries in both amplitude as well as kinetics. When listening task blocks were repeated, there was an accommodative reduction in the response amplitude of the left, but not the right hemisphere. Conclusions: These heretofore unobserved trends depict a more nuanced portrait of the functional asymmetry that has been observed previously. To our knowledge, these results additionally represent the first direct measurements of CBF during a speech processing task recommended by the American Speech-Language-Hearing Association for diagnosing auditory processing disorders.

19.
J Neurotrauma ; 37(18): 2014-2022, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32458719

RESUMO

Optimal surgical management of spine trauma will restore blood flow to the ischemic spinal cord. However, spine stabilization may also further exacerbate injury by inducing ischemia. Current electrophysiological technology is not capable of detecting acute changes in spinal cord blood flow or localizing ischemia. Further, alerts are delayed and unreliable. We developed an epidural optical device capable of directly measuring and immediately detecting changes in spinal cord blood flow using diffuse correlation spectroscopy (DCS). Herein we test the hypothesis that our device can continuously monitor blood flow during spine distraction. Additionally, we demonstrate the ability of our device to monitor multiple sites along the spinal cord and axially resolve changes in spinal cord blood flow. DCS-measured blood flow in the spinal cord was monitored at up to three spatial locations (cranial to, at, and caudal to the distraction site) during surgical distraction in a sheep model. Distraction was halted at 50% of baseline blood flow at the distraction site. We were able to monitor blood flow with DCS in multiple regions of the spinal cord simultaneously at ∼1 Hz. The distraction site had a greater decrement in flow than sites cranial to the injury (median -40 vs. -7%,). This pilot study demonstrated high temporal resolution and the capacity to axially resolve changes in spinal cord blood flow at and remote from the site of distraction. These early results suggest that this technology may assist in the surgical management of spine trauma and in corrective surgery of the spine.


Assuntos
Velocidade do Fluxo Sanguíneo/fisiologia , Potencial Evocado Motor/fisiologia , Osteogênese por Distração/efeitos adversos , Fluxo Sanguíneo Regional/fisiologia , Isquemia do Cordão Espinal/fisiopatologia , Animais , Feminino , Tecnologia de Fibra Óptica/métodos , Hemodinâmica/fisiologia , Vértebras Lombares/irrigação sanguínea , Vértebras Lombares/lesões , Masculino , Projetos Piloto , Ovinos , Isquemia do Cordão Espinal/diagnóstico por imagem , Vértebras Torácicas/irrigação sanguínea , Vértebras Torácicas/lesões
20.
Biomed Opt Express ; 11(11): 6551-6569, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-33282508

RESUMO

Extracorporeal membrane oxygenation (ECMO) is a form of cardiopulmonary bypass that provides life-saving support to critically ill patients whose illness is progressing despite maximal conventional support. Use in adults is expanding, however neurological injuries are common. Currently, the existing brain imaging tools are a snapshot in time and require high-risk patient transport. Here we assess the feasibility of measuring diffuse correlation spectroscopy, transcranial Doppler ultrasound, electroencephalography, and auditory brainstem responses at the bedside, and developing a cerebral autoregulation metric. We report preliminary results from two patients, demonstrating feasibility and laying the foundation for future studies monitoring neurological health during ECMO.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA