Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Adv ; 10(25): eadk9117, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38905343

RESUMO

The microbiome plays a key role in the health of all metazoans. Whether and how the microbiome favors the adaptation processes of organisms to extreme conditions, such as those of Antarctica, which are incompatible with most metazoans, is still unknown. We investigated the microbiome of three endemic and widespread species of Antarctic polychaetes: Leitoscoloplos geminus, Aphelochaeta palmeri, and Aglaophamus trissophyllus. We report here that these invertebrates contain a stable bacterial core dominated by Meiothermus and Anoxybacillus, equipped with a versatile genetic makeup and a unique portfolio of proteins useful for coping with extremely cold conditions as revealed by pangenomic and metaproteomic analyses. The close phylosymbiosis between Meiothermus and Anoxybacillus and these Antarctic polychaetes indicates a connection with their hosts that started in the past to support holobiont adaptation to the Antarctic Ocean. The wide suite of bacterial cryoprotective proteins found in Antarctic polychaetes may be useful for the development of nature-based biotechnological applications.


Assuntos
Congelamento , Microbiota , Poliquetos , Poliquetos/microbiologia , Animais , Regiões Antárticas , Filogenia , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética
2.
Front Microbiol ; 14: 1234725, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37799611

RESUMO

Microbiota plays essential roles in the health, physiology, and in adaptation of marine multi-cellular organisms to their environment. In Antarctica, marine organisms have a wide range of unique physiological functions and adaptive strategies, useful for coping with extremely cold conditions. However, the role of microbiota associated with Antarctic organisms in such adaptive strategies is underexplored. In the present study, we investigated the diversity and putative functions of the microbiome of the sea star Odontaster validus, one of the main keystone species of the Antarctic benthic ecosystems. We compared the whole-body bacterial microbiome of sea stars from different sites of the Antarctic Peninsula and Ross Sea, two areas located in two opposite geographical sectors of the Antarctic continent. The taxonomic composition of O. validus microbiomes changed both between and within the two Antarctic sectors, suggesting that environmental and biological factors acting both at large and local scales may influence microbiome diversity. Despite this, one bacterial family (Rhodobacteraceae) was shared among all sea star individuals from the two geographical sectors, representing up to 95% of the microbial core, and suggesting a key functional role of this taxon in holobiont metabolism and well-being. In addition, the genus Roseobacter belonging to this family was also present in the surrounding sediment, implying a potential horizontal acquisition of dominant bacterial core taxa via host-selection processes from the environment.

3.
Microorganisms ; 11(10)2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37894122

RESUMO

Current knowledge of the microbial diversity of shallow-water hydrothermal vents is still limited. Recent evidence suggests that these peculiar and heterogeneous systems might host highly diversified microbial assemblages with novel or poorly characterized lineages. In the present work, we used 16S rRNA gene metabarcoding to provide novel insights into the diversity of the bacterial and archaeal assemblages in seawater and sediments of three shallow-water hydrothermal systems of Panarea Island (Tyrrhenian Sea). The three areas were characterized by hot, cold, or intermediate temperatures and related venting activities. Microbial biodiversity in seawater largely differed from the benthic one, both in α-diversity (i.e., richness of amplicon sequence variants-ASVs) and in prokaryotic assemblage composition. Furthermore, at the class level, the pelagic prokaryotic assemblages were very similar among sites, whereas the benthic microbial assemblages differed markedly, reflecting the distinct features of the hydrothermal activities at the three sites we investigated. Our results show that ongoing high-temperature emissions can influence prokaryotic α-diversity at the seafloor, increasing turnover (ß-)diversity, and that the intermediate-temperature-venting spot that experienced a violent gas explosion 20 years ago now displays the highest benthic prokaryotic diversity. Overall, our results suggest that hydrothermal vent dynamics around Panarea Island can contribute to an increase in the local heterogeneity of physical-chemical conditions, especially at the seafloor, in turn boosting the overall microbial (γ-)diversity of this peculiar hydrothermal system.

4.
Environ Pollut ; 317: 120772, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36455775

RESUMO

Petroleum hydrocarbons and heavy metals are some of the most widespread contaminants affecting marine ecosystems, urgently needing effective and sustainable remediation solutions. Microbial-based bioremediation is gaining increasing interest as an effective, economically and environmentally sustainable strategy. Here, we hypothesized that the heavily polluted coastal area facing the Sarno River mouth, which discharges >3 tons of polycyclic aromatic hydrocarbons (PAHs) and ∼15 tons of heavy metals (HMs) into the sea annually, hosts unique microbiomes including marine bacteria useful for PAHs and HMs bioremediation. We thus enriched the microbiome of marine sediments, contextually selecting for HM-resistant bacteria. The enriched mixed bacterial culture was subjected to whole-DNA sequencing, metagenome-assembled-genomes (MAGs) annotation, and further sub-culturing to obtain the major bacterial species as pure strains. We obtained two novel isolates corresponding to the two most abundant MAGs (Alcanivorax xenomutans strain-SRM1 and Halomonas alkaliantarctica strain-SRM2), and tested their ability to degrade PAHs and remove HMs. Both strains exhibited high PAHs degradation (60-100%) and HMs removal (21-100%) yield, and we described in detail >60 genes in their MAGs to unveil the possible genetic basis for such abilities. Most promising yields (∼100%) were obtained towards naphthalene, pyrene and lead. We propose these novel bacterial strains and related genetic repertoire to be further exploited for effective bioremediation of marine environments contaminated with both PAHs and HMs.


Assuntos
Metais Pesados , Microbiota , Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Biodegradação Ambiental , Petróleo/análise , Bactérias/genética , Bactérias/metabolismo , Metais Pesados/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Hidrocarbonetos/metabolismo , Sedimentos Geológicos/microbiologia
5.
Microorganisms ; 10(5)2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-35630436

RESUMO

The contamination of coastal marine sediments with heavy metals (HMs) is a widespread phenomenon that requires effective remediation actions. Bioremediation based on the use of bacteria is an economically and environmentally sustainable effective strategy for reducing HM contamination and/or toxicity in marine sediments. However, information on the efficiency of marine-derived fungi for HM decontamination of marine sediments is still largely lacking, despite evidence of the performance of terrestrial fungal strains on other contaminated matrixes (e.g., soils, freshwater sediments, industrial wastes). Here, we carried out for the first time an array of parallel laboratory experiments by using different combinations of chemical and microbial amendments (including acidophilic autotrophic and heterotrophic bacteria, as well as filamentous marine fungi) for the bioremediation of highly HM-contaminated sediments of the Portman Bay (NW Mediterranean Sea), an area largely affected by long-term historical discharges of mine tailings. Our results indicate that the bioleaching performance of metals from the sediment is based on the addition of fungi (Aspergillus niger and Trichoderma sp.), either alone or in combination with autotrophic bacteria, was higher when compared to other treatments. In particular, fungal addition allowed obtaining bioleaching yields for As eight times higher than those by chemical treatments and double compared with the addition of bacteria alone. Moreover, in our study, the fungal addition was the only treatment allowing effective bioleaching of otherwise not mobile fractions of Zn and Cd, thus overtaking bacterial treatments. We found that the lower the sediment pH reached by the experimental conditions, as in the case of fungal addition, the higher the solubilization yield of metals, suggesting that the specific metabolic features of A. niger and Trichoderma sp. enable lowering sediment pH and enhance HM bioleaching. Overall, our findings indicate that fungi can be more effective than acidophilic autotrophic and heterotrophic bacteria in HM bioleaching, and as such, their use can represent a promising and efficient strategy for the bioremediation of marine sediments highly contaminated with heavy metals.

6.
Mar Environ Res ; 113: 18-30, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26562451

RESUMO

The Descriptor 5 (Eutrophication) of the EU Marine Strategy Framework Directive aims at preventing the negative effects of eutrophication. However, in coastal systems all indicators based on water column parameters fail in identifying the trophic status and its effects on biodiversity and ecosystem functioning. We investigated benthic trophic status, in terms of sedimentary organic matter quantity, composition and quality, along with meiofaunal abundance, richness of taxa and community composition in three coastal sites (N Adriatic Sea) affected by different levels of anthropogenic stressors. We show that, on the basis of organic matter quantity and composition, the investigated areas can be classified from oligo-to mesotrophic, whereas using meiofauna as a descriptor, their environmental quality ranged from sufficient to moderately impacted. Our results show that the benthic trophic status based on organic matter variables, is not sufficient to provide a sound assessment of the environmental quality in marine coastal ecosystems. However, data reported here indicate that the integration of the meiofaunal variable allows providing robust assessments of the marine environmental status.


Assuntos
Biodiversidade , Monitoramento Ambiental , Cadeia Alimentar , Invertebrados/classificação , Invertebrados/fisiologia , Animais , Carboidratos , Clorofila , Clorofila A , Conservação dos Recursos Naturais , Pigmentos Biológicos , Dinâmica Populacional , Proteínas , Água do Mar/química
7.
Sci Rep ; 6: 34544, 2016 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-27708343

RESUMO

In the Mediterranean Sea hard-bottom macroalgal meadows may switch to alternative and less-productive barrens grounds, as a result of sea urchins overgrazing. Meiofauna (and especially nematodes) represent key components of benthic ecosystems, are highly-diversified, sensitive to environmental change and anthropogenic impacts, but, so-far, have been neglected in studies on regime shifts. We report here that sedimentary organic matter contents, meiofaunal taxa richness and community composition, nematode α- and ß-biodiversity vary significantly between alternative macroalgal and barren states. The observed differences are consistent in six areas spread across the Mediterranean Sea, irrespective of barren extent. Our results suggest also that the low biodiversity levels in barren states are the result of habitat loss/fragmentation, which is associated also with a lower availability of trophic resources. Furthermore, differences in meiofaunal and nematode abundance, biomass and diversity between macroalgal meadow and barren states persist when the latter is not fully formed, or consists of patches interspersed in macroalgal meadows. Since barren grounds are expanding rapidly along the Mediterranean Sea and meiofauna are a key trophic component in marine ecosystems, we suggest that the extension and persistence of barrens at the expenses of macroalgal meadows could also affect resilience of higher trophic level.


Assuntos
Biodiversidade , Cadeia Alimentar , Microalgas/fisiologia , Nematoides/fisiologia , Animais , Mar Mediterrâneo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA