Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Diabetes ; 57(7): 1935-40, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18390792

RESUMO

OBJECTIVE: Congenital hyperinsulinism, usually associated with severe neonatal hypoglycemia, may progress to diabetes, typically during the 4th decade of life in nonpancreatectomized patients. We aimed to genotype the ATP-sensitive K(+) channel in a 10.5-year-old girl presenting with overt diabetes following hyperinsulinism in infancy. RESEARCH DESIGN AND METHODS: A female aged 10.5 years presented with new-onset, antibody-negative diabetes (A1C 10.6%). She was born large for gestational age (5 kg) to a nondiabetic mother and developed frequent hypoglycemic episodes, which persisted until age 3 years and responded initially to intravenous glucose and later to oral sweets. Currently, she is fully pubertal and obese (BMI 30.2 kg/m(2)), with a partially controlled convulsive disorder (since age 1 year) and poor school performance. Glucose levels were >11.1 mmol/l throughout 72 h of continuous glucose monitoring, with low insulin secretion during intravenous glucose tolerance testing. KCNJ11 and ABCC8 mutation analysis was performed, and the mutation identified was characterized in COSm6 cells. RESULTS: A novel, de novo heterozygous ABCC8 sulfonylurea receptor (SUR)1 mutation (R370S) was identified in the patient's DNA but not in that of either parent. Cotransfection of Kir6.2 and mutant SUR1 demonstrate that the mutated protein is expressed efficiently at the cell surface but fails to respond to MgADP, resulting in minimal channel activity. Interestingly, the heterozygous channel (WT:R370S) responded well to glibenclamide, a finding that lead to the successful initiation of sulfonylurea therapy. CONCLUSIONS: This new ABCC8 mutation is associated with neonatal hyperinsulinism progressing within 10 years to insulinopenic diabetes. Consistent with in vitro findings, the patient responded to sulfonylurea treatment. The mechanism causing the relatively rapid loss in beta-cell function is not clear, but it may involve mutation-induced increased beta-cell apoptosis related to increased metabolic demand.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Diabetes Mellitus Tipo 1/genética , Hiperinsulinismo/genética , Mutação , Canais de Potássio Corretores do Fluxo de Internalização/genética , Receptores de Droga/genética , Adulto , Envelhecimento , Criança , Diabetes Mellitus Tipo 1/complicações , Éxons , Feminino , Humanos , Hiperinsulinismo/complicações , Íntrons , Masculino , Obesidade/complicações , Pais , Linhagem , Puberdade , Convulsões/complicações , Irmãos , Receptores de Sulfonilureias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA