Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
PLoS One ; 18(10): e0285531, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37862290

RESUMO

The vertical distribution of radiocarbon (14C) was examined in two bottom sediment cores, taken from Lake Druksiai which had been used as a cooling pond for the Ignalina nuclear power plant (INPP) with two RBMK type reactors. The aim of this work was to reconstruct 14C amounts in the lake ecosystem during an 8-year period after the INPP was closed, as any official monitoring of 14C in liquid releases from the INPP was not performed. The possibility of comparing the variation of the 14C specific activity in the corresponding layers of the same period of 3 different cores (one taken in 2013 and two in 2019) revealed the variability of the determined values of liquid radiocarbon discharges from the INPP into the lake. Cores taken in 2019 showed a permament14C release rate of 0.76±0.06 GBq/y all eight years after the closure of the INPP. The 14C release rate established from radiocarbon measurements in both cores did not differ by more than 0.8 GBq/y. However, including data from the core taken several years ago, the estimated radiocarbon release rate values varied within 1.3 GBq/y.


Assuntos
Centrais Nucleares , Monitoramento de Radiação , Lagos , Radioisótopos de Carbono , Lagoas , Ecossistema , Sedimentos Geológicos
2.
Appl Radiat Isot ; 190: 110461, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36179439

RESUMO

The wide applications of the radiocarbon (14C) approach in environmental, archeological, and geological research often necessitates the analysis of microgram-sized samples. The ability to measure low carbon samples is particularly relevant for aerosol particle filters, especially for samples from pristine environments. For this purpose, we investigated the sample dilution method for graphitization of low-carbon samples (20-200 µg C) with an Automated Graphitization System (AGE-3), and applied a mass balance equation for the calculation of 14C values. Materials with known 14C values (standards NIST-OXII and IAEA-C7) were diluted with 14C-free phthalic anhydride (PhA) until sufficient mass (500 µg C) for graphitization with the AGE-3 system was acquired. Reliable 14C values were obtained for samples with carbon amount in the range of 40-200 µg. Next, we adapted the dilution method for estimation of aerosol sample 14C values. Using it, we attained a precision of 0.71 ± 0.83 pMC for 14C measurements of aerosol samples containing 40-200 µg C. A shift of radiocarbon values to 5.07 pMC (average 3.08 ± 1.7 pMC) was observed for samples with low carbon content (<20 µg C). We determined that a precision of 2-3 pMC is acceptable for aerosol particle source apportionment studies. Using the sample dilution method, graphitization with AGE-3 of aerosol samples with carbon content >40 µg becomes a viable and efficient way of sample preparation for 14C analysis.


Assuntos
Poluentes Atmosféricos , Carbono , Carbono/análise , Aerossóis , Monitoramento Ambiental , Poluentes Atmosféricos/análise
3.
PLoS One ; 15(8): e0237605, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32804934

RESUMO

The vertical distribution of radiocarbon (14C) was examined in the bottom sediment core, taken from Lake Druksiai, which has served as a cooling pond since 1983 for the 26 years of the Ignalina Nuclear Power Plant (INPP) operation using two RBMK-1500 reactors (Russian acronym for"Channelized Large Power Reactor"). 14C specific activity was measured in alkali-soluble and -insoluble fractions of the sediment layers. Complementary measurements of the 210Pb and 137Cs activity of the samples provided the possibility to evaluate the date of every layer formation, covering the 1947-2013 period. In addition, 14C distribution was examined in the scales of pelagic fish caught between 1980 and 2012. Our measurements reveal that, during the period 1947-1999, the radiocarbon specific activity in both fractions exhibits a parallel course with a difference of 5 ± 1 pMC (percent of modern carbon) being higher in alkali-soluble fraction, although 14C specific activity in both fractions increased by 11.4-13.6 pMC during the first 15 years of plant operation. However, during the 2000-2009 period, other than previously seen, a dissolved inorganic carbon (DIC) → aquatic primary producers → sediments 14C incorporation pattern occurred, as the radiocarbon specific activity difference between alkali-soluble and -insoluble fractions reached 94, 25, and 20 pMC in 2000, 2006, and 2008, respectively. Measurements in different sediment fractions allowed us to identify the unexpected organic nature of 14C contained in liquid effluences from the INPP in 2000-2009. The discrepancy between 14C specific activity in fish scales samples and DIC after 2000 also confirmed the possibility of organic 14C contamination. Possible reasons for this phenomenon might be industrial processes introduced at the INPP, such as the start of operation of the cementation facility for spent ion exchange resins, decontamination procedures, and various maintenance activities of reactor aging systems and equipment.


Assuntos
Radioisótopos de Carbono/análise , Sedimentos Geológicos/análise , Lagos/química , Monitoramento de Radiação/métodos , Animais , Radioisótopos de Césio/análise , Peixes/crescimento & desenvolvimento , Radioisótopos de Chumbo/análise , Lituânia , Centrais Nucleares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA