Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemphyschem ; 25(12): e202300605, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38517984

RESUMO

The extensive applications of MXenes, a novel type of layered materials known for their favorable characteristics, have sparked significant interest. This research focuses on investigating the influence of surface functionalization on the behavior of Mn2NTx (Tx=O2, F2) MXenes monolayers using the "Density functional theory (DFT) based full-potential linearized augmented-plane-wave (FP-LAPW)" method. We elucidate the differences in the physical properties of Mn2NTx through the influence of F and O surface functional groups. We found that O-termination results in half-metallic behavior, whereas the F-termination evolves metallic characteristics within these MXene systems. Similarly, surface termination has effectively influenced their optical absorption efficiency. For instance, Mn2NO2 and Mn2NF2 effectively absorb UV light ~50.15×104 cm-1 and 37.71×104 cm-1, respectively. Additionally, they demonstrated prominent refraction and reflection characteristics, which are comprehensively discussed in the present work. Our predictions offer valuable perspectives into the optical and electronic characteristics of Mn2NTx-based MXenes, presenting the promising potential for implementing them in diverse optoelectronic devices.

2.
Molecules ; 27(7)2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35408467

RESUMO

Photocatalytic CO2 reduction is a most promising technique to capture CO2 and reduce it to non-fossil fuel and other valuable compounds. Today, we are facing serious environmental issues due to the usage of excessive amounts of non-renewable energy resources. In this aspect, photocatalytic CO2 reduction will provide us with energy-enriched compounds and help to keep our environment clean and healthy. For this purpose, various photocatalysts have been designed to obtain selective products and improve efficiency of the system. Semiconductor materials have received great attention and have showed good performances for CO2 reduction. Titanium dioxide has been widely explored as a photocatalyst for CO2 reduction among the semiconductors due to its suitable electronic/optical properties, availability at low cost, thermal stability, low toxicity, and high photoactivity. Inspired by natural photosynthesis, the artificial Z-scheme of photocatalyst is constructed to provide an easy method to enhance efficiency of CO2 reduction. This review covers literature in this field, particularly the studies about the photocatalytic system, TiO2 Z-scheme heterojunction composites, and use of transition metals for CO2 photoreduction. Lastly, challenges and opportunities are described to open a new era in engineering and attain good performances with semiconductor materials for photocatalytic CO2 reduction.


Assuntos
Dióxido de Carbono , Titânio , Catálise , Semicondutores
3.
J Nanosci Nanotechnol ; 19(6): 3420-3428, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-30744769

RESUMO

In this study, we describe a novel method for preparing Y2O3@CaO ceramic cores with anti-hydration performance and high-interface stability against interface reaction of Ti-6Al-4V alloys. The effect of Y2O3 coating on microstructure, mechanical, anti-hydration properties of ceramic cores and interface reaction with Ti-6Al-4V alloys was studied. The results show that the surface charge of Y2O3 and CaO are opposite at the pH value of 13, which might result in an electrostatic force and become the main driving force of Y2O3 particles absorb on the surface of CaO particles. The Y2O3 coating improved the anti-hydration properties of the CaO-based ceramic cores after sintering at 1450 °C. Meanwhile, the flexural strength improved from 11.2 to 18.8 MPa. At last, the interaction between the ceramic cores and Ti-6Al-4V metal were studied by centrifugal investment casting. Y2O3 coating can effectively reduce the interface reaction and the thickness of the interaction layer in the casting was less than 10 µm. The results suggest that the Y2O3@CaO ceramic with anti-hydration performance provide excellent mechanical and high-interface stability against interface reaction of Ti-6Al-4V alloys.

4.
Heliyon ; 9(6): e16772, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37303547

RESUMO

Improvements of visible light activity, slow recombination rate, stability, and efficiency are major challenges facing photocatalyst technologies today. Utilizing heterostructures of g-C3N4 (bandgap ∼2.7eV) with Nb2O5 (bandgap ∼3.4eV) as an alternative materials for the first time, we tried to overcome such challenges in this work. Heterostructures of Nb2O5/g-C3N4 have been synthesized via hydrothermal technique. And then a time-resolved laser flash photolysis of those heterostructures has been analyzed, focusing on seeking how to improve photocatalytic efficiency for molecular hydrogen (H2) evolution. The transient absorption spectra and the lifetime of charge carriers at different wavelengths have been observed for Nb2O5/g-C3N4, where g-C3N4 was used for a control. The role of hole scavenger (methanol) has also been investigated for the purpose of boosting charge trapping and H2 evolution. The long lifetime of Nb2O5/g-C3N4 heterostructures (6.54165 µs) compared to g-C3N4 (3.1651897 µs) has successfully supported the increased H2 evolution of 75 mmol/h.g. An enhancement in the rate of H2 evolution (160 mmol/h.g) in the presence of methanol has been confirmed. This study not only deepens our understanding of the role of scavenger, but also enables a rigorous quantification of the recombination rate crucial for photocatalytic applications in relation with efficient H2 production.

5.
J Nanosci Nanotechnol ; 12(3): 1967-71, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22755006

RESUMO

The conducting metal oxide (ZnO, Cu2O) films were used for fabrication of p-n heterojunction by rf sputtering and electrodeposition techniques respectively. The as synthesized films were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), UV spectroscopy and electrical techniques. The electrical properties of the p-Cu2O/n-ZnO heterojunction were examined using the current-voltage measurements. The current-voltage (I-V) result showed that potential barrier was higher than the turn-on voltage, which was attributed to the presence of the interface defect states. The PN junction parameters such as ideality factor, barrier height, and series resistance were determined using conventional forward bias current-voltage characteristics. The annealing of Cu2O increase the crystallinity size and which enhance the photo current from 1.6 mA/cm2 to 3.7 mA/cm2. The annealing of respective film resulted in a decrease of these parameters with an increase in efficiency of solar cell from 0.14% to 0.3% at 350 degrees C.

6.
J Nanosci Nanotechnol ; 20(4): 2130-2137, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31492221

RESUMO

It is necessary to study the possible interactions among various chemical surfaces and analytes before applying them to biological systems. We report the synthesis of carbon nanotubes-iron oxide (SPIONs-CNT) nanocomposite material by using lecithin stabilized superparamagnetic iron oxide nanoparticles (SPIONs) obtained by facile hydrothermal technique. Various characterizations of the obtained nanocomposite were carried out and electrochemical studies were performed further to study the interaction capabilities of the nanocomposite with anti-TB drug Rifampicin. Obtained results by cyclic voltammetric studies of SPIONs-CNT nanocomposite with limit of detection (LOD) of 1.178 µM showed the enhanced electrochemical sensitivity and selectivity of anti-tuberculosis (anti-TB) drug Rifampicin (RIF).


Assuntos
Grafite , Nanocompostos , Nanotubos de Carbono , Antituberculosos , Técnicas Eletroquímicas , Nanopartículas Magnéticas de Óxido de Ferro , Rifampina
7.
ACS Appl Mater Interfaces ; 11(34): 30819-30827, 2019 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-31389679

RESUMO

Layered manganese-based cathode materials are of great interest because of their high specific capacities for sodium-ion batteries. However, the Jahn-Teller effect and the inevitable phase transition are detrimental for achieving considerable cycling stability and rate capability. Herein, a P2-type manganese oxide nanoplate cathode material modified by Mo-substitution with an oriented stacking structure and exposed {010} active facets is reported. The manganese oxide nanoplate cathode yields remarkable capacity retention of 86% after 1200 cycles at 10 C (2000 mA g-1). The specific power density is estimated to be as high as 530 W kg-1 with a specific discharge capacity 143.9 mA h g-1 at 1 C and 89.6% capacity retention up to 100 cycles. The superior electrochemical performances can be attributed to the efficient chemical modification and the unique structural features of the present manganese oxide nanoplate. Mo-modification can endow the manganese oxide cathode with enlarged lattice space and average oxidation state and thus favorable Na+ diffusion to inhibit the Jahn-Teller effect and improve the structure stability, thereby achieving an extremely long cycling life. A multilayer oriented stacking nanoplate structure with exposed {010} active facets is also beneficial for providing more surface active sites and shortening the Na+ diffusion path, leading to better rate capability.

8.
Dalton Trans ; 47(19): 6692-6701, 2018 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-29623338

RESUMO

Efficient photocatalysts induced by visible light (e.g. BiOI) have attracted wide attention for energy storage and environmental pollutant rehabilitation. In this work, N-doped bamboo tube-like carbon (NTC) was derived directly from the carbonization of bio-waste (withered typha grass) under an ammonia atmosphere. During fabrication, the BiOI/NTC material was used as a self-sacrificing template and I- ions were gradually replaced by OH- ions from NH3·H2O solution. Then Bi7O9I3/NTC was formed with micro-/nanohierarchical structures, which could exactly be explained by the in situ ion exchange-recrystallization mechanism. Thereinto, the well-defined hierarchical lantern-like Bi7O9I3 composed of interconnecting ultrathin nanosheets firmly embedded the "bamboo tubes" of NTC, which endow sufficient interface and high specific surface area (40 m2 g-1). The multiple synergistic effects of the lantern-like structure with ultrathin nanosheets, low iodine content and well-contacted interface endow the synthesized Bi7O9I3/NTC with outstanding visible-light catalytic activity. The results show that the obtained Bi7O9I3/NTC degraded 93.5% of methyl orange and 97.6% of rhodamine B within 2 hours, showing superior performance as compared to the pure BiOI. Therefore, our work demonstrates a controllable approach that can provide guidelines for designing optimized bismuth oxyiodide-based photocatalyst materials and has the potential for application in environmental remediation.

9.
Biosens Bioelectron ; 117: 852-859, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-30096740

RESUMO

This work is the first report describing the solution grown 3D manganese oxide nanofibrous (MnO2 NFs) mesh and its potential for the simultaneous detection of biomolecules such as ascorbic acid and uric acid. The mesh is synthesized by a facile, one-pot, and cost-effective hydrothermal approach without using any template or structure directing compound. The morphology consists of randomly placed nanofibres possessing a diameter in the range of 10-25 nm, and length of several micron; constituting a highly porous and flexible material. The electrochemical potential was examined by recording cyclic voltammetry signals towards ascorbic acid and uric acid. The special mesh morphology offers a large surface area to promote enhanced electrochemical activity, and also provided a macroporous network that supported efficient mass transport. Additionally, the strong electronic cloud and roughness of MnO2 NFs mesh facilitated the fast oxidation of species at very low potential. The lower detection limit was found to be 1.33 µM (S/N = 3) and 1.03 µM (S/N = 3) for ascorbic acid and uric acid, respectively. The MnO2 NFs mesh modified electrodes can robustly differentiate both of them by giving well separate signals (Δ = 500 mV) indicating capability of the material towards selective detection. The sensor has been successfully applied to human blood and urine samples and the recoveries were found statistically significant. These results demonstrate the practical feasibility of 3D mesh to develop sensors for the accurate diagnosis of clinically important molecules.


Assuntos
Ácido Ascórbico/análise , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Compostos de Manganês/química , Nanofibras/química , Óxidos/química , Ácido Úrico/análise , Eletrodos , Humanos , Limite de Detecção , Oxirredução , Tamanho da Partícula , Sensibilidade e Especificidade , Propriedades de Superfície
10.
Sci Rep ; 5: 12389, 2015 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-26201998

RESUMO

To explore the effect of morphology on catalytic properties of graphitic carbon nitride (GCN), we have studied oxygen reduction reaction (ORR) performance of two different morphologies of GCN in alkaline media. Among both, tubular GCN react with dissolved oxygen in the ORR with an onset potential close to commercial Pt/C. Furthermore, the higher stability and excellent methanol tolerance of tubular GCN compared to Pt/C emphasizes its suitability for fuel cells.

11.
ACS Appl Mater Interfaces ; 6(16): 13635-41, 2014 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-25076046

RESUMO

Hierarchical nanostructures (Hs) have recently garnered enormous attention due to their remarkable performances in catalysis, electronic devices, energy storage and conversion. Considering the advantage of hierarchical nanostructures, we have formulated a facile and template free method to synthesize novel hierarchical nanospheres (NHNs) of ZnV2O4. Both zinc and vanadium are earth abundant, relatively economical and can offer several oxidation states, which can render a broad range of redox reactions favorable for electrochemical energy storage applications. Keeping these points in mind, we investigated for the first time the electrochemical supercapacitor performance of NHNs. The electrochemical measurements were performed in 2 M KOH solution. The measured specific capacitance of ZnV2O4 electrode is 360 F/g at 1 A/g with good stability and retention capacity of 89% after 1000 cycles. Moreover, the hydrogen storage properties of NHNs were measured at 473, 573, and 623 K with an absorption of 1.76, 2.03, and 2.49 wt %. respectively. These studies pave the way to consider ZnV2O4 as prospective material for energy storage applications.

12.
ACS Appl Mater Interfaces ; 6(12): 9550-6, 2014 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-24836455

RESUMO

We first report the catalyst free growth of indium selenide microwires through a facile approach in a horizontal tube furnace using indium and selenium elemental powders as precursors. The synthesized microwires are γ-phase, high quality, single crystalline and grown along the [112̅0] direction. The wires have a uniform diameter of ∼1 µm and lengths of several micrometers. Photodetectors fabricated from synthesized microwires show reliable and stable photoresponse exhibiting a photoresponsivity of 0.54 A/W, external quantum efficiency of 1.23 at 633 nm with 4 V bias. The photodetector has a reasonable response time of 0.11 s and specific detectivity of 3.94 × 10(10) Jones at 633 nm with a light detection range from 350 to 1050 nm, covering the UV-vis-NIR region. The photoresponse shown by single wire is attributed to direct band gap (Eg = 1.3 eV) and superior single crystalline quality. The photoresponsive studies of single microwires clearly suggest the use of this new and facile growth technique without using catalysts for fabrication of indium selenide microwires in next-generation sensors and detectors for commercial and military applications.

13.
ACS Appl Mater Interfaces ; 6(2): 1258-65, 2014 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-24354285

RESUMO

We have developed a facile, scale up, and efficient method for the preparation of graphitic-C3N4 nanofibers (GCNNFs) as electrodes for supercapacitors and photocatalysts. The as-synthesized GCNNFs have 1D structure with higher concentration of nitrogen that is favorable for higher conductivity and electrochemical performance. Secondly, the high surface area of GCNNF provides a large electrode-electrolyte contact area, sufficient light harvesting and mass transfer, as well as increased redox potential. Thus, the GCNNF supercapacitor electrode shows high capacitance of 263.75 F g(-1) and excellent cyclic stability in 0.1 M Na2SO4 aqueous electrolyte with the capacitance retention of 93.6% after 2000 cycles at 1 A g(-1) current density. GCNNFs exhibit high capacitance of 208 F g(-1) even at 10 A g(-1), with the appreciable capacitance retention of 89.5%, which proves its better rate capability. Moreover, the GCNNF shows enhanced photocatalytic activity in the photodegradation of RhB in comparison to the bulk graphitic-C3N4 (GCN). The degradation rate constant of GCNNF photocatalyst is almost 4 times higher than GCN. The enhanced photocatalytic activity of GCNNF is mainly due to the higher surface area, appropriate bandgap, and fewer defects in GCNNF as compared to GCN. As an economical precursor (melamine) and harmless, facile, and template-free synthesis method with excellent performance both in supercapacitors and in photodegradation, GCNNF is a strong candidate for energy storage and environment protection applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA