Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
J Cell Physiol ; 234(11): 20634-20647, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31012113

RESUMO

The sonic hedgehog (SHH) signaling pathway plays an integral role in the maintenance and progression of bladder cancer (BCa) and SHH inhibition may be an efficacious strategy for BCa treatment. We assessed an in-house human BCa tissue microarray and found that the SHH transcription factors, GLI1 and GLI2, were increased in disease progression. A panel of BCa cell lines show that two invasive lines, UM-UC-3 and 253J-BV, both express these transcription factors but UM-UC-3 produces more SHH ligand and is less responsive in viability to pathway stimulation by recombinant human SHH or smoothened agonist, and less responsive to inhibitors including the smoothened inhibitors cyclopamine and SANT-1. In contrast, 253J-BV was highly responsive to these manipulations. We utilized a GLI1 and GLI2 antisense oligonucleotide (ASO) to bypass pathway mechanics and target the transcription factors directly. UM-UC-3 decreased in viability due to both ASOs but 253J-BV was only affected by GLI2 ASO. We utilized the murine intravesical orthotopic human BCa (mio-hBC) model for the establishment of noninvasive BCa and treated tumors with GLI2 ASO. Tumor size, growth rate, and GLI2 messenger RNA and protein expression were decreased. These results suggest that GLI2 ASO may be a promising new targeted therapy for BCa.


Assuntos
Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proteínas Nucleares/agonistas , Proteínas Nucleares/antagonistas & inibidores , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/metabolismo , Proteína Gli2 com Dedos de Zinco/agonistas , Proteína Gli2 com Dedos de Zinco/antagonistas & inibidores , Antineoplásicos/farmacologia , Ciclo Celular , Linhagem Celular Tumoral , Sobrevivência Celular , Humanos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteína Gli2 com Dedos de Zinco/genética , Proteína Gli2 com Dedos de Zinco/metabolismo
2.
Int J Cancer ; 140(2): 358-369, 2017 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-27672740

RESUMO

Despite the substantial benefit of androgen deprivation therapy (ADT) for metastatic prostate cancer, patients often progress to castration-resistant disease (CRPC) that is more difficult to treat. CRPC is associated with renewed androgen receptor activity in tumor cells and restoration of tumor androgen levels through acquired intratumoral steroidogenesis (AIS). Although prostate cancer (PCa) cells have been shown to have steroidogenic capability in vitro, we previously found that benign prostate stromal cells (PrSCs) can also synthesize testosterone (T) from an adrenal precursor, DHEA, when stimulated with a hedgehog (Hh) pathway agonist, SAG. Here, we show exposure of PrSCs to a different Smoothened (Smo) agonist, Ag1.5, or to conditioned medium from sonic hedgehog overexpressing LNCaP cells induces steroidogenic enzyme expression in PrSCs and significantly increases production of T and its precursor steroids in a Smo-dependent manner from 22-OH-cholesterol substrate. Hh agonist-/ligand-treated PrSCs produced androgens at a rate similar to or greater than that of PCa cell lines. Likewise, primary bone marrow stromal cells became more steroidogenic and produced T under the influence of Smo agonist. Treatment of mice bearing LNCaP xenografts with a Smo antagonist, TAK-441, delayed the onset of CRPC after castration and substantially reduced androgen levels in residual tumors. These outcomes support the idea that stromal cells in ADT-treated primary or metastatic prostate tumors can contribute to AIS as a consequence of a paracrine Hh signaling microenvironment. As such, Smo antagonists may be useful for targeting prostate tumor stromal cell-derived AIS and delaying the onset of CRPC after ADT.


Assuntos
Proteínas Hedgehog/metabolismo , Comunicação Parácrina/fisiologia , Neoplasias de Próstata Resistentes à Castração/metabolismo , Neoplasias de Próstata Resistentes à Castração/patologia , Microambiente Tumoral/fisiologia , Androgênios/metabolismo , Animais , Medula Óssea/metabolismo , Castração/métodos , Linhagem Celular Tumoral , Humanos , Masculino , Camundongos , Camundongos Nus , Receptores Androgênicos/metabolismo , Transdução de Sinais/fisiologia , Células Estromais/metabolismo , Testosterona/metabolismo
3.
Lab Invest ; 94(7): 726-39, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24840332

RESUMO

The forkhead box (Fox) superfamily of transcription factors has essential roles in organogenesis and tissue differentiation. Foxa1 and Foxa2 are expressed during prostate budding and ductal morphogenesis, whereas Foxa1 expression is retained in adult prostate epithelium. Previous characterization of prostatic tissue rescued from embryonic Foxa1 knockout mice revealed Foxa1 to be essential for ductal morphogenesis and epithelial maturation. However, it is unknown whether Foxa1 is required to maintain the differentiated status in adult prostate epithelium. Here, we employed the PBCre4 transgenic system and determined the impact of prostate-specific Foxa1 deletion in adult murine epithelium. PBCre4/Foxa1(loxp/loxp) mouse prostates showed progressive florid hyperplasia with extensive cribriform patterning, with the anterior prostate being most affected. Immunohistochemistry studies show mosaic Foxa1 KO consistent with PBCre4 activity, with Foxa1 KO epithelial cells specifically exhibiting altered cell morphology, increased proliferation, and elevated expression of basal cell markers. Castration studies showed that, while PBCre4/Foxa1(loxp/loxp) prostates did not exhibit altered sensitivity in response to hormone ablation compared with control prostates, the number of Foxa1-positive cells in mosaic Foxa1 KO prostates was significantly reduced compared with Foxa1-negative cells following castration. Unexpectedly, gene expression profile analyses revealed that Foxa1 deletion caused abnormal expression of seminal vesicle-associated genes in KO prostates. In summary, these results indicate Foxa1 expression is required for the maintenance of prostatic cellular differentiation.


Assuntos
Diferenciação Celular/genética , Epitélio/metabolismo , Fator 3-alfa Nuclear de Hepatócito/genética , Hiperplasia Prostática/genética , Animais , Epitélio/patologia , Fator 3-alfa Nuclear de Hepatócito/deficiência , Fator 3-alfa Nuclear de Hepatócito/metabolismo , Imuno-Histoquímica , Integrases/genética , Integrases/metabolismo , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Microscopia de Fluorescência , Análise de Sequência com Séries de Oligonucleotídeos , Próstata/metabolismo , Próstata/patologia , Hiperplasia Prostática/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Glândulas Seminais/metabolismo , Transcriptoma/genética
4.
Prostate ; 74(14): 1400-10, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25132524

RESUMO

BACKGROUND: Gli2, a transcription factor in the Hedgehog pathway, is overexpressed in castrate-resistant prostate cancer (PCa). Previously we showed that Gli2 overexpression increased transcriptional activity of androgen receptor (AR) and conferred androgen growth-independence to normally growth-dependent PCa cells. Here we localized the regions of AR-Gli2 protein interaction and determined the domains within Gli2 needed for AR co-activation. METHODS: Co-immunoprecipitation and GST-pulldown assays were used to define AR-Gli binding domains. Co-activation assays using androgen-responsive promoter reporters were used to define Gli2 regions needed for AR co-activation. Chromatin immunoprecipitation (ChIP) assays were used to confirm nuclear interactions of Gli2 with AR in PCa cells. RESULTS: The Gli2 C-terminal domain (CTD) is sufficient for AR co-activation. Two elements within the CTD were required: (1) an AR binding domain within aa628-897; and (2) at least part of the Gli2 transactivation domain within aa1252-1586. In turn, Gli2 binds the tau5/AF5 ligand-independent activation domain in the AR N-terminus. Mutations in the WxxLF motif in tau5/AF5 greatly diminished binding to Gli2-CTD. Gli2 interaction with AR tau5/AF5 was further substantiated by the ability of Gli2/Gli2-CTD to co-activate truncated AR splice variants (AR-V7/ARV567es). ChIP assays confirmed that Gli2 associates with chromatin at androgen response elements found near androgen-responsive genes in LNCaP cells. These assays also showed that AR associates with chromatin containing a Gli-response element near a Gli-responsive gene. CONCLUSION: Our findings indicate that Gli2 overexpression in PCa cells might support development of castration resistant PCa through AR co-activation and suggests that AR might modulate transcription from Gli2.


Assuntos
Fatores de Transcrição Kruppel-Like/metabolismo , Proteínas Nucleares/metabolismo , Neoplasias da Próstata/metabolismo , Receptores Androgênicos/metabolismo , Linhagem Celular Tumoral , DNA de Neoplasias/genética , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Humanos , Imunoprecipitação , Fatores de Transcrição Kruppel-Like/genética , Masculino , Proteínas Nucleares/genética , Neoplasias da Próstata/genética , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/metabolismo , Estrutura Terciária de Proteína , Receptores Androgênicos/genética , Elementos de Resposta , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ativação Transcricional , Transfecção , Proteína GLI1 em Dedos de Zinco , Proteína Gli2 com Dedos de Zinco
5.
Proc Natl Acad Sci U S A ; 108(30): 12449-54, 2011 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-21746916

RESUMO

Anticancer drugs are effective against tumors that depend on the molecular target of the drug. Known targets of cytotoxic anticancer drugs are involved in cell proliferation; drugs acting on such targets are ineffective against nonproliferating tumor cells, survival of which leads to eventual therapy failure. Function-based genomic screening identified the coatomer protein complex ζ1 (COPZ1) gene as essential for different tumor cell types but not for normal cells. COPZ1 encodes a subunit of coatomer protein complex 1 (COPI) involved in intracellular traffic and autophagy. The knockdown of COPZ1, but not of COPZ2 encoding isoform coatomer protein complex ζ2, caused Golgi apparatus collapse, blocked autophagy, and induced apoptosis in both proliferating and nondividing tumor cells. In contrast, inhibition of normal cell growth required simultaneous knockdown of both COPZ1 and COPZ2. COPZ2 (but not COPZ1) was down-regulated in the majority of tumor cell lines and in clinical samples of different cancer types. Reexpression of COPZ2 protected tumor cells from killing by COPZ1 knockdown, indicating that tumor cell dependence on COPZ1 is the result of COPZ2 silencing. COPZ2 displays no tumor-suppressive activities, but it harbors microRNA 152, which is silenced in tumor cells concurrently with COPZ2 and acts as a tumor suppressor in vitro and in vivo. Silencing of microRNA 152 in different cancers and the ensuing down-regulation of its host gene COPZ2 offer a therapeutic opportunity for proliferation-independent selective killing of tumor cells by COPZ1-targeting agents.


Assuntos
Proteína Coatomer/genética , Neoplasias/genética , Apoptose/genética , Autofagia/genética , Sequência de Bases , Linhagem Celular Tumoral , DNA de Neoplasias/genética , Feminino , Técnicas de Silenciamento de Genes , Inativação Gênica , Complexo de Golgi/genética , Complexo de Golgi/patologia , Humanos , Masculino , MicroRNAs/genética , Neoplasias/patologia , Isoformas de Proteínas/genética , RNA Neoplásico/genética , RNA Interferente Pequeno/genética , Supressão Genética
6.
Am J Physiol Endocrinol Metab ; 304(11): E1131-9, 2013 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-23548616

RESUMO

Forty years ago, Judah Folkman (Folkman. N Engl J Med 285: 1182-1186, 1971) proposed that tumor growth might be controlled by limiting formation of new blood vessels (angiogenesis) needed to supply a growing tumor with oxygen and nutrients. To this end, numerous "antiangiogenic" agents have been developed and tested for therapeutic efficacy in cancer patients, including prostate cancer (CaP) patients, with limited success. Despite the lack of clinical efficacy of lead anti-angiogenic therapeutics in CaP patients, recent published evidence continues to support the idea that prostate tumor vasculature provides a reasonable target for development of new therapeutics. Particularly relevant to antiangiogenic therapies targeted to the prostate is the observation that specific hormones can affect the survival and vascular function of prostate endothelial cells within normal and malignant prostate tissues. Here, we review the evidence demonstrating that both androgen(s) and vitamin D significantly impact the growth and survival of endothelial cells residing within prostate cancer and that systemic changes in circulating androgen or vitamin D drastically affect blood flow and vascularity of prostate tissue. Furthermore, recent evidence will be discussed about the expression of the receptors for both androgen and vitamin D in prostate endothelial cells that argues for direct effects of these hormone-activated receptors on the biology of endothelial cells. Based on this literature, we propose that prostate tumor vasculature represents an unexplored target for modulation of tumor growth. A better understanding of androgen and vitamin D effects on prostate endothelial cells will support development of more effective angiogenesis-targeting therapeutics for CaP patients.


Assuntos
Células Endoteliais/metabolismo , Próstata/metabolismo , Neoplasias da Próstata/metabolismo , Receptores Androgênicos/metabolismo , Receptores de Calcitriol/metabolismo , Células Endoteliais/patologia , Humanos , Masculino , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Próstata/irrigação sanguínea , Próstata/patologia , Neoplasias da Próstata/patologia
7.
Endocr Relat Cancer ; 30(12)2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37800655

RESUMO

Intratumoral androgen biosynthesis contributes to castration-resistant prostate cancer progression in patients treated with androgen deprivation therapy. The molecular mechanisms by which castration-resistant prostate cancer acquires the capacity for androgen biosynthesis to bypass androgen deprivation therapy are not entirely known. Here, we show that semaphorin 3C, a secreted signaling protein that is highly expressed in castration-resistant prostate cancer, can promote steroidogenesis by altering the expression profile of key steroidogenic enzymes. Semaphorin 3C not only upregulates enzymes required for androgen synthesis from dehydroepiandrosterone or de novo from cholesterol but also simultaneously downregulates enzymes involved in the androgen inactivation pathway. These changes in gene expression correlate with increased production of androgens induced by semaphorin 3C in prostate cancer model cells. Moreover, semaphorin 3C upregulates androgen synthesis in LNCaP cell-derived xenograft tumors, likely contributing to the enhanced in vivo tumor growth rate post castration. Furthermore, semaphorin 3C activates sterol regulatory element-binding protein, a transcription factor that upregulates enzymes involved in the synthesis of cholesterol, a sole precursor for de novo steroidogenesis. The ability of semaphorin 3C to promote intratumoral androgen synthesis may be a key mechanism contributing to the reactivation of the androgen receptor pathway in castration-resistant prostate cancer, conferring continued growth under androgen deprivation therapy. These findings identify semaphorin 3C as a potential therapeutic target for suppressing intratumoral steroidogenesis.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Semaforinas , Masculino , Humanos , Androgênios/metabolismo , Neoplasias de Próstata Resistentes à Castração/metabolismo , Antagonistas de Androgênios , Receptores Androgênicos/metabolismo , Colesterol/metabolismo , Semaforinas/genética , Semaforinas/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica
8.
Prostate ; 72(8): 817-24, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-22025366

RESUMO

Acquired intratumoral steroidogenesis is involved in progression of prostate cancer to castration resistant disease (CRPC) and a target for improved therapeutics. Recent work has shown that prostate cancer cells can acquire steroidogenic activity as they progress to a therapeutic-resistant state. However, benign prostate stromal cells (PrSCs) also have steroidogenic potential though they are often overlooked as a source of intratumoral androgens. Here, we present preliminary studies showing that the steroidogenic activity of primary human PrSCs is significantly increased by exposure to a Hedgehog agonist (SAG) or by transduction of PrSCs with lentiviruses that expresses active Gli2 (Gli2ΔN), a transcription factor that is triggered by Hh signaling. Comparative gene expression profiling on Chips, that was confirmed by quantitative real-time PCR, revealed that hedgehog agonist treatment induced in these cells expressions of hedgehog target genes (Gli1, Ptch1, and SCUBE1) plus a specific cadre of genes involved in cholesterol/steroid biosynthesis, metabolism, and transport. Genes involved downstream in steroid hormone generation, including CYP17A1 and CYP19A1 were also induced. Both the hedgehog agonist and the Gli2-expressing lentivirus significantly increased the output of testosterone (T) from PrSCs that were supplemented with dihydroepiandrosterone (DHEA), an adrenal precursor of T. Finally, knockdown of Gli2 by siRNA suppressed the ability of SAG to induce this response. Collectively, our data indicate that hedgehog/Gli signaling may be a factor in acquired intratumoral steroidogenesis of a prostate tumor through its actions on stromal cells in the tumor microenvironment and an influence for the development of CRPC.


Assuntos
Proteínas Hedgehog/fisiologia , Proteínas Oncogênicas/fisiologia , Comunicação Parácrina/fisiologia , Próstata/metabolismo , Esteroides/metabolismo , Células Estromais/metabolismo , Transativadores/fisiologia , Células Cultivadas , Cicloexilaminas/farmacologia , Desidroepiandrosterona/metabolismo , Di-Hidrotestosterona/metabolismo , Proteínas Hedgehog/agonistas , Humanos , Fatores de Transcrição Kruppel-Like/metabolismo , Masculino , Próstata/citologia , Próstata/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Células Estromais/citologia , Células Estromais/efeitos dos fármacos , Testosterona/metabolismo , Tiofenos/farmacologia , Proteína GLI1 em Dedos de Zinco , Proteína Gli2 com Dedos de Zinco
9.
Mol Cell Endocrinol ; 522: 111136, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33347954

RESUMO

BACKGROUND: Gli is an oncogenic transcription factor family thought to be involved in breast cancer (BrCa) cell growth. Gli activity is regulated by a post-translational proteolytic process that is suppressed by Hedgehog signaling. In prostate cancer cells, however, Gli activation is mediated by an interaction of active androgen receptor proteins with Gli3 that stabilizes Gli3 in its un-proteolyzed form. Here we show that the estrogen receptor (ER), ERα, also binds Gli3 and activates Gli in BrCa cells. Moreover, we show that ER + BrCa cells are dependent on Gli3 for cancer cell growth. METHODS: Transfection with Gli-luciferase reporter was used to report Gli activity in 293FT or BrCa cells (MCF7, T47D, MDA-MB-453) with or without steroid ligands. Co-immunoprecipitation and proximity ligation were used to show association of Gli3 with ERα. Gli3 stability was determined by western blots of BrCa cell extracts. ERα knockdown or destabilization (by fulvestrant) was used to assess how loss of ERα affects estradiol-induced Gli reporter activity, formation of intranuclear ERα-Gli3 complexes and Gli3 stability. Expression of Gli1 and/or other endogenous Gli-target genes in BrCa cells were measured by qPCR in the presence or absence of estradiol. Gli3 knockdown was assessed for effects on BrCa cell growth using the Cyquant assay. RESULTS: ERα co-transfection increased Gli reporter activity in 293FT cells that was further increased by estradiol. Gli3 co-precipitated in ERα immunoprecipitates. Acute (2 h) estradiol increased Gli reporter activity and the formation of intranuclear ERα-Gli3 complexes in ER + BrCa cells but more chronic estradiol (48 h) reduced ERα-Gli complexes commensurate with reduced ERα levels. Gli3 stability and endogenous activity was only increased by more chronic estradiol treatment. Fulvestrant or ERα knockdown suppressed E2-induction of Gli activity, intranuclear ERα-Gli3 complexes and stabilization of Gli3. Gli3 knockdown significantly reduced the growth of BrCa cells. CONCLUSIONS: ERα interacts with Gli3 in BrCa cells and estradiol treatment leads to Gli3 stabilization and increased expression of Gli-target genes. Furthermore, we found tthat Gli3 is necessary for BrCa cell growth. These results support the idea that the ERα-Gli interaction and Gli3 may be novel targets for effective control of BrCa growth.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Receptores de Estrogênio/metabolismo , Proteína Gli3 com Dedos de Zinco/metabolismo , Linhagem Celular Tumoral , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Estradiol/farmacologia , Feminino , Células HEK293 , Humanos , Estabilidade Proteica/efeitos dos fármacos
10.
Nat Commun ; 12(1): 7349, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34934057

RESUMO

Neuroendocrine (NE) prostate cancer (NEPC) is a lethal subtype of castration-resistant prostate cancer (PCa) arising either de novo or from transdifferentiated prostate adenocarcinoma following androgen deprivation therapy (ADT). Extensive computational analysis has identified a high degree of association between the long noncoding RNA (lncRNA) H19 and NEPC, with the longest isoform highly expressed in NEPC. H19 regulates PCa lineage plasticity by driving a bidirectional cell identity of NE phenotype (H19 overexpression) or luminal phenotype (H19 knockdown). It contributes to treatment resistance, with the knockdown of H19 re-sensitizing PCa to ADT. It is also essential for the proliferation and invasion of NEPC. H19 levels are negatively regulated by androgen signaling via androgen receptor (AR). When androgen is absent SOX2 levels increase, driving H19 transcription and facilitating transdifferentiation. H19 facilitates the PRC2 complex in regulating methylation changes at H3K27me3/H3K4me3 histone sites of AR-driven and NEPC-related genes. Additionally, this lncRNA induces alterations in genome-wide DNA methylation on CpG sites, further regulating genes associated with the NEPC phenotype. Our clinical data identify H19 as a candidate diagnostic marker and predictive marker of NEPC with elevated H19 levels associated with an increased probability of biochemical recurrence and metastatic disease in patients receiving ADT. Here we report H19 as an early upstream regulator of cell fate, plasticity, and treatment resistance in NEPC that can reverse/transform cells to a treatable form of PCa once therapeutically deactivated.


Assuntos
Carcinoma Neuroendócrino/genética , Carcinoma Neuroendócrino/patologia , Plasticidade Celular/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , RNA Longo não Codificante/metabolismo , Antagonistas de Androgênios/uso terapêutico , Animais , Benzamidas/farmacologia , Benzamidas/uso terapêutico , Biomarcadores Tumorais/metabolismo , Carcinoma Neuroendócrino/diagnóstico , Carcinoma Neuroendócrino/tratamento farmacológico , Linhagem Celular Tumoral , Linhagem da Célula/genética , Núcleo Celular/metabolismo , Proliferação de Células/genética , Estudos de Coortes , Metilação de DNA/genética , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos/genética , Epigênese Genética/efeitos dos fármacos , Genoma Humano , Histonas/metabolismo , Humanos , Masculino , Gradação de Tumores , Invasividade Neoplásica , Células-Tronco Neoplásicas/metabolismo , Nitrilas/farmacologia , Nitrilas/uso terapêutico , Organoides/metabolismo , Organoides/patologia , Feniltioidantoína/farmacologia , Feniltioidantoína/uso terapêutico , Filogenia , Complexo Repressor Polycomb 2/metabolismo , Regiões Promotoras Genéticas/genética , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/tratamento farmacológico , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Longo não Codificante/genética , Receptores Androgênicos/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Transcrição Gênica/efeitos dos fármacos
11.
Mol Cancer ; 9: 89, 2010 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-20420697

RESUMO

BACKGROUND: Castration resistant prostate cancer (CRPC) develops as a consequence of hormone therapies used to deplete androgens in advanced prostate cancer patients. CRPC cells are able to grow in a low androgen environment and this is associated with anomalous activity of their endogenous androgen receptor (AR) despite the low systemic androgen levels in the patients. Therefore, the reactivated tumor cell androgen signaling pathway is thought to provide a target for control of CRPC. Previously, we reported that Hedgehog (Hh) signaling was conditionally activated by androgen deprivation in androgen sensitive prostate cancer cells and here we studied the potential for cross-talk between Hh and androgen signaling activities in androgen deprived and androgen independent (AI) prostate cancer cells. RESULTS: Treatment of a variety of androgen-deprived or AI prostate cancer cells with the Hh inhibitor, cyclopamine, resulted in dose-dependent modulation of the expression of genes that are regulated by androgen. The effect of cyclopamine on endogenous androgen-regulated gene expression in androgen deprived and AI prostate cancer cells was consistent with the suppressive effects of cyclopamine on the expression of a reporter gene (luciferase) from two different androgen-dependent promoters. Similarly, reduction of smoothened (Smo) expression with siRNA co-suppressed expression of androgen-inducible KLK2 and KLK3 in androgen deprived cells without affecting the expression of androgen receptor (AR) mRNA or protein. Cyclopamine also prevented the outgrowth of AI cells from androgen growth-dependent parental LNCaP cells and suppressed the growth of an overt AI-LNCaP variant whereas supplemental androgen (R1881) restored growth to the AI cells in the presence of cyclopamine. Conversely, overexpression of Gli1 or Gli2 in LNCaP cells enhanced AR-specific gene expression in the absence of androgen. Overexpressed Gli1/Gli2 also enabled parental LNCaP cells to grow in androgen depleted medium. AR protein co-immunoprecipitates with Gli2 protein from transfected 293T cell lysates. CONCLUSIONS: Collectively, our results indicate that Hh/Gli signaling supports androgen signaling and AI growth in prostate cancer cells in a low androgen environment. The finding that Gli2 co-immunoprecipitates with AR protein suggests that an interaction between these proteins might be the basis for Hedgehog/Gli support of androgen signaling under this condition.


Assuntos
Resistencia a Medicamentos Antineoplásicos/genética , Proteínas Hedgehog/metabolismo , Neoplasias da Próstata/metabolismo , Transdução de Sinais/fisiologia , Fatores de Transcrição/metabolismo , Androgênios/genética , Androgênios/metabolismo , Western Blotting , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/genética , Proteínas Hedgehog/genética , Humanos , Imunoprecipitação , Masculino , Neoplasias da Próstata/genética , RNA Interferente Pequeno , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição/genética , Transfecção , Alcaloides de Veratrum/farmacologia , Proteína GLI1 em Dedos de Zinco
12.
J Urol ; 184(1): 344-51, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20488474

RESUMO

PURPOSE: Hedgehog signaling regulates Gli transcription factors. Aberrant hedgehog signaling can be oncogenic and drugs that block hedgehog are being tested as anticancer agents. We considered whether hedgehog/Gli signaling may be involved in human bladder transitional cell carcinoma proliferative or invasive behavior. MATERIALS AND METHODS: We stratified the human bladder transitional cell carcinoma lines RT4 (ATCC), 253JP, 253BV, UMUC6 and UMUC3 for relative growth rate by cell counting and for in vitro invasiveness by Matrigel invasion assay. Cells were tested for growth inhibition by the hedgehog blocking drug cyclopamine or the inactive mimic tomatidine. Cell RNA was characterized for hedgehog signaling component expression, including ligands, receptors and signaling mediators, by quantitative reverse transcriptase-polymerase chain reaction. Gli2 expression or activity was modified by Gli2 expression lentiviruses or the Gli inhibitor GANT61. We measured effects on proliferation and invasiveness. RESULTS: Cell growth rates and invasiveness were stratified into an equivalent order (RT4 <243JP <253BV

Assuntos
Carcinoma de Células de Transição/genética , Proteínas Hedgehog/genética , Fatores de Transcrição Kruppel-Like/genética , Invasividade Neoplásica/genética , Proteínas Nucleares/genética , Transdução de Sinais/genética , Neoplasias da Bexiga Urinária/genética , Western Blotting , Linhagem Celular Tumoral , Dioxóis/farmacologia , Perfilação da Expressão Gênica , Proteínas Hedgehog/antagonistas & inibidores , Humanos , Modelos Lineares , Piperazinas/farmacologia , Piridinas/farmacologia , Pirimidinas/farmacologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Tomatina/análogos & derivados , Tomatina/farmacologia , Alcaloides de Veratrum/farmacologia , Proteína Gli2 com Dedos de Zinco
13.
Cell Stress Chaperones ; 25(2): 245-251, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31970695

RESUMO

The purpose of the work was to investigate mechanisms of erythropoietin-induced protection and accelerated recovery of kidneys and ureters from obstructive injury. Unilateral ureteral obstruction was established for 24, 48, and 72 h in C57BL/6 mice using a non-traumatic micro-clip followed by the microscopic quantification of ureteral peristalsis pre- and post-obstruction. Expression of erythropoietin, erythropoietin receptor, ß-common receptor, and downstream apoptosis-related markers was assessed by RT-PCR and immunohistochemistry in ureters and kidneys and compared to the respective organs on the contralateral side within each animal. Expression of genes in kidneys and ureters from mice treated with 20 IU of erythropoietin daily for 72 h prior to obstruction was compared to that of untreated mice following obstruction. Apoptosis in ureteral tissues after 72-h obstruction was assessed via TUNEL assay. Ureteral obstruction increased apoptosis in affected ureters, with peristaltic function halted following all periods of obstruction. Erythropoietin treatment suppressed apoptosis in obstructed tissues and increased the percentage of mice retaining ureteral function immediately following obstruction reversal. Erythropoietin, erythropoietin receptor, Bcl-2, and Bcl-xl mRNA expression were down-regulated, while phospho-Nf-ĸb p65 was up-regulated in ureteral epithelia following obstruction. Erythropoietin treatment induced anti-apoptotic signaling via down-regulated Bax mRNA expression and abrogated phospho-Nf-ĸb p65. Erythropoietin-induced protection of ureteral function and accelerated recovery post-obstruction removal is mediated via anti-apoptotic mechanisms. Ureteral function is disrupted even following obstruction removal, negatively affecting renal function due to delayed recovery. Thus, our results represent a potential target for the development of safe therapeutic agents aimed at improving functional recovery from obstructive injury.


Assuntos
Epoetina alfa , Rim , Substâncias Protetoras , Ureter , Obstrução Ureteral/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Epoetina alfa/administração & dosagem , Epoetina alfa/farmacologia , Feminino , Rim/efeitos dos fármacos , Rim/lesões , Camundongos , Camundongos Endogâmicos C57BL , Substâncias Protetoras/administração & dosagem , Substâncias Protetoras/farmacologia , Recuperação de Função Fisiológica , Ureter/efeitos dos fármacos , Ureter/lesões
14.
Clin Cancer Res ; 26(7): 1678-1689, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31919137

RESUMO

PURPOSE: Patients with metastatic prostate cancer are increasingly presenting with treatment-resistant, androgen receptor-negative/low (AR-/Low) tumors, with or without neuroendocrine characteristics, in processes attributed to tumor cell plasticity. This plasticity has been modeled by Rb1/p53 knockdown/knockout and is accompanied by overexpression of the pluripotency factor, Sox2. Here, we explore the role of the developmental transcription factor Sox9 in the process of prostate cancer therapy response and tumor progression. EXPERIMENTAL DESIGN: Unique prostate cancer cell models that capture AR-/Low stem cell-like intermediates were analyzed for features of plasticity and the functional role of Sox9. Human prostate cancer xenografts and tissue microarrays were evaluated for temporal alterations in Sox9 expression. The role of NF-κB pathway activity in Sox9 overexpression was explored. RESULTS: Prostate cancer stem cell-like intermediates have reduced Rb1 and p53 protein expression and overexpress Sox2 as well as Sox9. Sox9 was required for spheroid growth, and overexpression increased invasiveness and neural features of prostate cancer cells. Sox9 was transiently upregulated in castration-induced progression of prostate cancer xenografts and was specifically overexpressed in neoadjuvant hormone therapy (NHT)-treated patient tumors. High Sox9 expression in NHT-treated patients predicts biochemical recurrence. Finally, we link Sox9 induction to NF-κB dimer activation in prostate cancer cells. CONCLUSIONS: Developmentally reprogrammed prostate cancer cell models recapitulate features of clinically advanced prostate tumors, including downregulated Rb1/p53 and overexpression of Sox2 with Sox9. Sox9 is a marker of a transitional state that identifies prostate cancer cells under the stress of therapeutic assault and facilitates progression to therapy resistance. Its expression may index the relative activity of the NF-κB pathway.


Assuntos
Antagonistas de Receptores de Andrógenos/farmacologia , Resistencia a Medicamentos Antineoplásicos , Células Neuroendócrinas/patologia , Neoplasias de Próstata Resistentes à Castração/patologia , Receptores Androgênicos/metabolismo , Fatores de Transcrição SOX9/metabolismo , Células-Tronco/patologia , Animais , Linhagem Celular Tumoral , Humanos , Masculino , Camundongos , NF-kappa B/metabolismo , Células Neuroendócrinas/metabolismo , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/metabolismo , Receptores Androgênicos/genética , Proteína do Retinoblastoma/genética , Proteína do Retinoblastoma/metabolismo , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Transdução de Sinais , Células-Tronco/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
15.
J Urol ; 181(6): 2790-6, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19375749

RESUMO

PURPOSE: Partial bladder outlet obstruction or ovariectomy with subsequent estrogen replenishment induces bladder hypertrophy in rabbits and yet the functional outcomes of these procedures differ. We investigated whether these models might be distinguished by differential expression of the genes controlling angiogenesis. MATERIALS AND METHODS: Groups of male rabbits underwent sham surgery or partial bladder outlet obstruction for 1 or 2 weeks. Groups of females underwent sham surgery, ovariectomy or ovariectomy plus estrogen for 1 or 2 weeks. Bladders from each group were weighed and assayed for the contractile response, smooth muscle content and vascular density. Mucosa and muscle layers were separated and RNA from the fractions was assayed by quantitative real-time polymerase chain reaction to measure the relative expression of vascular endothelial growth factor, and angiopoietin 1 and 2 mRNA. RESULTS: Male bladders with partial outlet obstruction had attributes that typified hypertrophy with a loss of contractile function. Vascular endothelial growth factor expression was up-regulated in the mucosa and muscle layers but the effect was most pronounced in mucosa. Angiopoietin 1 expression was significantly up-regulated in muscle. Female bladders with ovariectomy plus estrogen had attributes that typified bladder hypertrophy with increased contractile function. Vascular endothelial growth factor expression was up-regulated early in mucosa but more highly and consistently increased in muscle. Angiopoietin 1 and 2 expression was not significantly affected. CONCLUSIONS: Although these models have similar outcomes with regard to bladder hypertrophy, they have opposite functional outcomes that coincide with compartmental differences in the expression of genes involved in the regulation of angiogenesis. The disparity in gene expression might explain the difference in the functional outcomes.


Assuntos
Angiopoietina-1/biossíntese , Angiopoietina-2/biossíntese , Bexiga Urinária/metabolismo , Bexiga Urinária/patologia , Fator A de Crescimento do Endotélio Vascular/biossíntese , Angiopoietina-1/genética , Angiopoietina-2/genética , Animais , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica , Hipertrofia/genética , Hipertrofia/metabolismo , Masculino , Neovascularização Patológica/genética , Coelhos
16.
Eur Urol ; 76(5): 546-559, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31445843

RESUMO

CONTEXT: It is increasingly evident that non-protein-coding regions of the genome can give rise to transcripts that form functional layers of the cancer genome. One of most abundant classes in these regions is long noncoding RNAs (lncRNAs). They have gained increasing attention in prostate cancer (PCa) and paved the way for a greater understanding of these cryptic regulators in cancer. OBJECTIVE: To review current research exploring the functional biology of lncRNAs in PCa over the past three decades. EVIDENCE ACQUISITION: A systematic review was performed using PubMed to search for reports with terms "long noncoding RNA", "prostate", and "cancer" over the past 30 yr (1988-2018). EVIDENCE SYNTHESIS: We comprehensively surveyed the literature collected and summarise experiments leading to the characterisation of lncRNAs in PCa. A historical timeline of lncRNA identification is described, where each lncRNA is categorised mechanistically and within the primary areas of carcinogenesis: tumour risk and initiation, tumour promotion, tumour suppression, and tumour treatment resistance. We describe select lncRNAs that exemplify these areas. We also review whether these lncRNAs have a clinical utility in PCa diagnosis, prognosis, and prediction, and as therapeutic targets. CONCLUSIONS: The biology of lncRNA is multifaceted, demonstrating a complex array of molecular and cellular functions. These studies reveal that lncRNAs are involved in every stage of PCa. Their clinical utility for diagnosis, prognosis, and prediction of PCa is well supported, but further evaluation for their therapeutic candidacy is needed. We provide a detailed resource and view inside the lncRNA landscape for other cancer biologists, oncologists, and clinicians. PATIENT SUMMARY: In this study, we review current knowledge of the non-protein-coding genome in prostate cancer (PCa). We conclude that many of these regions are functional and a source of accurate biomarkers in PCa. With a strong research foundation, they hold promise as future therapeutic targets, yet clinical trials are necessary to determine their intrinsic value to PCa disease management.


Assuntos
Descoberta de Drogas , Neoplasias da Próstata , RNA Longo não Codificante , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/genética , Humanos , Masculino , Farmacogenética , Utilização de Procedimentos e Técnicas , Prognóstico , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Neoplasias da Próstata/terapia , RNA Longo não Codificante/análise , RNA Longo não Codificante/genética
17.
Oncogene ; 38(7): 913-934, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30194451

RESUMO

The propensity of cancer cells to transition between epithelial and mesenchymal phenotypic states via the epithelial-mesenchymal transition (EMT) program can regulate metastatic processes, cancer progression, and treatment resistance. Transcriptional investigations using reversible models of EMT, revealed the mesenchymal-to-epithelial reverting transition (MErT) to be enriched in clinical samples of metastatic castrate resistant prostate cancer (mCRPC). From this enrichment, a metastasis-derived gene signature was identified that predicted more rapid cancer relapse and reduced survival across multiple human carcinoma types. Additionally, the transcriptional profile of MErT is not a simple mirror image of EMT as tumour cells retain a transcriptional "memory" following a reversible EMT. This memory was also enriched in mCRPC samples. Cumulatively, our studies reveal the transcriptional profile of epithelial-mesenchymal plasticity and highlight the unique transcriptional properties of MErT. Furthermore, our findings provide evidence to support the association of epithelial plasticity with poor clinical outcomes in multiple human carcinoma types.


Assuntos
Transição Epitelial-Mesenquimal , Neoplasias de Próstata Resistentes à Castração/metabolismo , Neoplasias de Próstata Resistentes à Castração/mortalidade , Linhagem Celular Tumoral , Intervalo Livre de Doença , Humanos , Masculino , Metástase Neoplásica , Neoplasias de Próstata Resistentes à Castração/classificação , Neoplasias de Próstata Resistentes à Castração/patologia , Taxa de Sobrevida
18.
Oncogene ; 38(13): 2436, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30510231

RESUMO

Following the publication of the above article, the authors noted an error in Figure 4, panel B. The colours of the localized and mCRPC samples were accidentally switched. The authors have corrected the colour scheme and added a key to the figure. They have also updated the colour scheme of panel C, both bars are now red instead of one red and one blue. The authors wish to apologize for any inconvenience caused.

19.
Curr Mol Med ; 7(5): 479-89, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17691963

RESUMO

Wnt/beta-catenin signaling is constitutively increased in several major classes of tumors arising from the urogenital tract. In this review we focus on this pathway mainly in Wilms tumors and prostate carcinomas, followed by a brief discussion of its potential role in other types of urological tumors. Molecular studies in these types of cancers have highlighted novel components upstream and downstream of this central oncogenic pathway. Beta-catenin gain-of-function mutations are strongly linked to WT1 loss-of-function mutations in syndromic Wilms tumors, and Wnt/beta-catenin signaling increases androgen receptor mRNA expression and blocks apoptosis in prostate cancers. Novel downstream target genes activated by Wnt/beta-catenin signaling are emerging from expression profiling in genetically defined classes of Wilms tumors, and similar analyses are expected to reveal additional downstream genes of this pathway specific to prostate cancers. The identities of these genes will likely suggest new targeted therapies for urological malignancies.


Assuntos
Neoplasias da Próstata/metabolismo , Transdução de Sinais , Tumor de Wilms/metabolismo , Proteínas Wnt/metabolismo , beta Catenina/metabolismo , Animais , Humanos , Rim/embriologia , Rim/metabolismo , Rim/patologia , Masculino
20.
Oncotarget ; 9(51): 29842, 2018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-30038724

RESUMO

[This corrects the article DOI: 10.18632/oncotarget.19386.].

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA