RESUMO
The rapid emergence of evasive SARS-CoV-2 variants is an ongoing challenge for COVID-19 vaccinology. Traditional virus neutralization tests provide detailed datasets of neutralization titers against the viral variants. Such datasets are difficult to interpret and do not immediately inform of the sufficiency of the breadth of the antibody response. Some of these issues could be tackled using the antigenic cartography approach. In this study, we created antigenic maps using neutralization titers of sera from donors who received the Sputnik V booster vaccine after primary Sputnik V vaccination and compared them with the antigenic maps based on serum neutralization titers of Comirnaty-boosted donors. A traditional analysis of neutralization titers against the WT (wild-type), Alpha, Beta, Delta, Omicron BA.1, and BA.4/BA.5 variants showed a significant booster humoral response after both homologous (Sputnik V) and heterologous (Comirnaty) revaccinations against all of the studied viral variants. However, despite this, a more in-depth analysis using antigenic cartography revealed that Omicron variants remain antigenically distant from the WT, which is indicative of the formation of insufficient levels of cross-neutralizing antibodies. The implications of these findings may be significant when developing a new vaccine regimen.
Assuntos
Vacina BNT162 , COVID-19 , Humanos , Imunização Secundária , SARS-CoV-2/genética , COVID-19/prevenção & controle , Vacinação , Anticorpos Antivirais , Anticorpos NeutralizantesRESUMO
The serine/threonine-specific protein kinases (STKs) are important for cell survival, proliferation, differentiation, and apoptosis. In B cells, these kinases play indispensable roles in regulating important cellular functions. Multiple studies on human and other animal cells have shown that multiple STKs are involved in different stages of B cell development and antibody production. However, how STKs affect B cell development and function is still not completely understood. Considering that B cells are clinically important in immunity and diseases, our understanding of STKs' roles in B cells is in great need of investigation with current technologies. Investigating serine/threonine kinases will not only deepen our insight into B cell-related disorders but also facilitate the identification of more effective drug targets for conditions like lymphoma and systemic lupus erythematosus.
Assuntos
Linfócitos B , Proteínas Serina-Treonina Quinases , Humanos , Linfócitos B/imunologia , Linfócitos B/metabolismo , Animais , Proteínas Serina-Treonina Quinases/metabolismo , Diferenciação Celular/imunologia , Transdução de SinaisRESUMO
This review gives an overview of the protective role of CD8+ T cells in SARS-CoV-2 infection. The cross-reactive responses intermediated by CD8+ T cells in unexposed cohorts are described. Additionally, the relevance of resident CD8+ T cells in the upper and lower airway during infection and CD8+ T-cell responses following vaccination are discussed, including recent worrisome breakthrough infections and variants of concerns (VOCs). Lastly, we explain the correlation between CD8+ T cells and COVID-19 severity. This review aids in a deeper comprehension of the association between CD8+ T cells and SARS-CoV-2 and broadens a vision for future exploration.
Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Linfócitos T CD8-Positivos , Reações Cruzadas , VacinaçãoRESUMO
The persistent pandemic of coronavirus disease in 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) currently poses a major infectious threat to public health around the world. COVID-19 is an infectious disease characterized by strong induction of inflammatory cytokines, progressive lung inflammation, and potential multiple organs dysfunction. SARS-CoV-2 infection is closely related to the innate immune system and adaptive immune system. Dendritic cells (DCs), as a "bridge" connecting innate immunity and adaptive immunity, play many important roles in viral diseases. In this review, we will pay special attention to the possible mechanism of dendritic cells in human viral transmission and clinical progression of diseases, as well as the reduction and dysfunction of DCs in severe SARS-CoV-2 infection, so as to understand the mechanism and immunological characteristics of SARS-CoV-2 infection.
Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Citocinas , Imunidade Inata , Células DendríticasRESUMO
Hepatitis B has become one of the major global health threats, especially in developing countries and regions. Hepatitis B virus infection greatly increases the risk for liver diseases such as cirrhosis and cancer. However, treatment for hepatitis B is limited when considering the huge base of infected people. The immune response against hepatitis B is mediated mainly by CD8+ T cells, which are key to fighting invading viruses, while regulatory T cells prevent overreaction of the immune response process. Additionally, follicular T helper cells play a key role in B-cell activation, proliferation, differentiation, and formation of germinal centers. The pathogenic process of hepatitis B virus is generally the result of a disorder or dysfunction of the immune system. Therefore, we present in this review the critical functions and related biological processes of regulatory T cells and follicular T helper cells during HBV infection.
Assuntos
Vírus da Hepatite B , Hepatite B , Humanos , Linfócitos T Reguladores , Linfócitos T Auxiliares-Indutores/patologiaRESUMO
Replication-incompetent adenoviral vectors have been extensively used as a platform for vaccine design, with at least four anti-COVID-19 vaccines authorized to date. These vaccines elicit neutralizing antibody responses directed against SARS-CoV-2 Spike protein and confer significant level of protection against SARS-CoV-2 infection. Immunization with adenovirus-vectored vaccines is known to be accompanied by the production of anti-vector antibodies, which may translate into reduced efficacy of booster or repeated rounds of revaccination. Here, we used blood samples from patients who received an adenovirus-based Gam-COVID-Vac vaccine to address the question of whether anti-vector antibodies may influence the magnitude of SARS-CoV-2-specific humoral response after booster vaccination. We observed that rAd26-based prime vaccination with Gam-COVID-Vac induced the development of Ad26-neutralizing antibodies, which persisted in circulation for at least 9 months. Our analysis further indicates that high pre-boost Ad26 neutralizing antibody titers do not appear to affect the humoral immunogenicity of the Gam-COVID-Vac boost. The titers of anti-SARS-CoV-2 RBD IgGs and antibodies, which neutralized both the wild type and the circulating variants of concern of SARS-CoV-2 such as Delta and Omicron, were independent of the pre-boost levels of Ad26-neutralizing antibodies. Thus, our results support the development of repeated immunization schedule with adenovirus-based COVID-19 vaccines.
RESUMO
Both SARS-CoV-2 infection and vaccination have previously been demonstrated to elicit robust, yet somewhat limited immunity against the evolving variants of SARS-CoV-2. Nevertheless, reports performing side-by-side comparison of immune responses following infection vs. vaccination have been relatively scarce. The aim of this study was to compare B-cell response to adenovirus-vectored vaccination in SARS-CoV-2-naive individuals with that observed in the COVID-19 convalescent patients six months after the first encounter with the viral antigens. We set out to use a single analytical platform and performed comprehensive analysis of serum levels of receptor binding domain (RBD)-specific and virus-neutralizing antibodies, frequencies of RBD-binding circulating memory B cells (MBCs), MBC-derived antibody-secreting cells, as well as RBD-specific and virus-neutralizing activity of MBC-derived antibodies after Gam-COVID-Vac (Sputnik V) vaccination and/or natural SARS-CoV-2 infection. Overall, natural immunity was superior to Gam-COVID-Vac vaccination. The levels of neutralizing MBC-derived antibodies in the convalescent patients turned out to be significantly higher than those found following vaccination. Our results suggest that after six months, SARS-CoV-2-specific MBC immunity is more robust in COVID-19 convalescent patients than in Gam-COVID-Vac recipients. Collectively, our data unambiguously indicate that natural immunity outperforms Gam-COVID-Vac-induced immunity six months following recovery/vaccination, which should inform healthcare and vaccination decisions.
Assuntos
COVID-19 , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Humanos , Células B de Memória , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , VacinaçãoRESUMO
The development of effective vaccines against SARS-CoV-2 remains a global health priority. Despite extensive use, the effects of Sputnik V on B cell immunity need to be explored in detail. We performed comprehensive profiling of humoral and B cell responses in a cohort of vaccinated subjects (n = 22), and demonstrate that Sputnik vaccination results in robust B cell immunity. We show that B memory cell (MBC) and antibody responses to Sputnik V were heavily dependent on whether the vaccinee had a history of SARS-CoV-2 infection or not. 85 days after the first dose of the vaccine, ex vivo stimulated MBCs from the vast majority of Sputnik V vaccinees produced antibodies that robustly neutralized the Wuhan Spike-pseudotyped lentivirus. MBC-derived antibodies from all previously infected and some of the naïve vaccine recipients could also cross-neutralize Beta (B.1.351) variant of SARS-CoV-2. Virus-neutralizing activity of MBC-derived antibodies correlated well with that of the serum antibodies, suggesting the interplay between the MBC and long-lived plasma cell responses. Thus, our in-depth analysis of MBC responses in Sputnik V vaccinees complements traditional serological approaches and may provide important outlook into future B cell responses upon re-encounter with the emerging variants of SARS-CoV-2.