Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Microbiol ; 15: 1386428, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38784796

RESUMO

Allergic asthma (AA) is a common inflammatory airway disease characterized by increased airway hyper-responsiveness (AHR), inflammation, and remodeling. Akkermansia muciniphila is a strictly anaerobic bacterium residing in the gut and is a promising next-generation probiotic to improve metabolic inflammatory syndrome. A recent study suggested the beneficial effect of live A. muciniphila on allergic airway inflammation (AAI) in mice. However, whether the heat-killed form can improve AAI requires further investigation. Mice sensitized and challenged with house dust mites (HDM) develop AA hallmarks including inflammatory cell infiltration, goblet cell hyperplasia, and subepithelial collagen deposition in the lungs. These phenomena were reversed by oral administration of the heat-killed A. muciniphila strain EB-AMDK19 (AMDK19-HK) isolated from the feces of healthy Koreans. Furthermore, AMDK19-HK diminished the HDM-induced AHR to inhaled methacholine, lung mast cell accumulation, and serum HDM-specific IgE levels. It also led to the overall suppression of IL-4, IL-13, and eotaxin production in bronchoalveolar lavage fluids, and Il4, Il5, Il13, and Ccl17 gene expression in lung tissues. Moreover, AMDK19-HK suppressed Th2-associated cytokine production in the splenocytes of HDM-sensitized mice in vitro. Additionally, a combination of 16S rRNA gene sequencing and short-chain fatty acid (SCFA) analysis in cecal samples revealed that AMDK19-HK modulated the relative abundance of circulating SCFA-associated gut genera, including a positive correlation with Lachnospiraceae_ NK4A136_group and a negative correlation with Lachnoclostridium and significantly increased cecal SCFA concentrations. Finally, AMDK19-HK improved intestinal mucosal barrier function. These results suggest that the oral administration of AMDK19-HK ameliorates HDM-induced AAI in mice by suppressing Th2-mediated immune responses and could have a protective effect against AA development.

2.
Front Microbiol ; 14: 1123547, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37007480

RESUMO

Introduction: Nonalcoholic steatohepatitis (NASH) is an advanced nonalcoholic fatty liver disease characterized by chronic inflammation and fibrosis. A dysbiosis of the gut microbiota has been associated with the pathophysiology of NASH, and probiotics have proven helpful in its treatment and prevention. Although both traditional and next-generation probiotics have the potential to alleviate various diseases, studies that observe the therapeutic effect of next-generation probiotics on NASH are lacking. Therefore, we investigated whether a next-generation probiotic candidate, Faecalibacterium prausnitzii, contributed to the mitigation of NASH. Methods: In this study, we conducted 16S rRNA sequencing analyses in patients with NASH and healthy controls. To test F. prausnitzii could alleviate NASH symptoms, we isolated four F. prausnitzii strains (EB-FPDK3, EB-FPDK9, EB-FPDK11, and EB-FPYYK1) from fecal samples collected from four healthy individuals. Mice were maintained on a high-fructose high-fat diet for 16 weeks to induce a NASH model and received oral administration of the bacterial strains. Changes in characteristic NASH phenotypes were assessed via oral glucose tolerance tests, biochemical assays, and histological analyses. Results: 16S rRNA sequencing analyses confirmed that the relative abundance of F. prausnitzii reduced significantly in patients with NASH compared to healthy controls (p < 0.05). In the NASH mice, F. prausnitzii supplementation improved glucose homeostasis, prevented hepatic lipid accumulation, curbed liver damage and fibrosis, restored damaged gut barrier functions, and alleviated hepatic steatosis and liver inflammation. Furthermore, real-time PCR assays documented that the four F. prausnitzii strains regulated the expression of genes related to hepatic steatosis in these mice. Discussion: Our study, therefore, confirms that the administration of F. prausnitzii bacteria can alleviate NASH symptoms. We propose that F. prausnitzii has the potential to contribute to the next-generation probiotic treatment of NASH.

3.
J Med Food ; 25(6): 565-575, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35708632

RESUMO

Muscular atrophy is a muscle disease in which muscle mass and strength decrease due to aging, injury, metabolic disorders, or chronic conditions. Proteins in muscle tissue are degraded by the ubiquitin-proteasome pathway, and atrophy accelerates this pathway. Akkermansia muciniphila and Faecalibacterium prausnitzii strains are effective agents against metabolic and inflammatory diseases in next-generation probiotic research. In this study, we evaluated the efficacy of A. muciniphila strain EB-AMDK19 and F. prausnitzii strain EB-FPDK11 in a mouse model of muscular atrophy, since atrophy inhibits energy metabolism and immune activation. After oral administration of each strain for 4 weeks, the hind legs of the mice were fixed with a plaster cast to immobilize them for a week. As a result, the administration of EB-AMDK19 and EB-FPDK11 strains improved grip strength but did not increase muscle mass. At the molecular level, A. muciniphila and F. prausnitzii treatments decreased the expression levels of ubiquitin-proteasome genes, atrogin-1, MuRF, and cathepsin L. They increased the expression level of the mitochondrial biogenesis regulatory gene, PGC-1α. The effect of the strains was confirmed by a decrease in myostatin. Furthermore, A. muciniphila and F. prausnitzii modulated the immune function by enhancing ZO-1 and inhibiting IL-6. In particular, EB-AMDK19 promoted the expression of IL-10, an anti-inflammatory cytokine. These results suggest that A. muciniphila and F. prausnitzii may have beneficial effects on muscular atrophy, verified by newly isolated EB-AMDK19 and EB-FPDK11 as potential next-generation probiotics.


Assuntos
Faecalibacterium prausnitzii , Complexo de Endopeptidases do Proteassoma , Akkermansia , Animais , Faecalibacterium prausnitzii/metabolismo , Camundongos , Força Muscular , Atrofia Muscular/etiologia , Ubiquitinas/metabolismo , Verrucomicrobia/fisiologia
4.
Sci Rep ; 12(1): 7324, 2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35513696

RESUMO

Atopic dermatitis (AD) is a common inflammatory skin disease, and its pathogenesis is closely associated with microbial homeostasis in the gut, namely the gut-skin axis. Particularly, recent metagenomics studies revealed that the abundance of two major bacterial species in the gut, Faecalibacterium prausnitzii and Akkermansia muciniphila, may play a critical role in the pathogenesis of AD, but the effect of these species in AD has not yet been elucidated. To evaluate the potential beneficial effect of F. prausnitzii or A. muciniphila in AD, we conducted an animal model study where F. prausnitzii EB-FPDK11 or A. muciniphila EB-AMDK19, isolated from humans, was orally administered to 2,5-dinitrochlorobenzene (DNCB)-induced AD models using NC/Nga mice at a daily dose of 108 CFUs/mouse for six weeks. As a result, the administration of each strain of F. prausnitzii and A. muciniphila improved AD-related markers, such as dermatitis score, scratching behavior, and serum immunoglobulin E level. Also, the F. prausnitzii and A. muciniphila treatments decreased the level of thymic stromal lymphopoietin (TSLP), triggering the production of T helper (Th) 2 cytokines, and improved the imbalance between the Th1 and Th2 immune responses induced by DNCB. Meanwhile, the oral administration of the bacteria enhanced the production of filaggrin in the skin and ZO-1 in the gut barrier, leading to the recovery of functions. Taken together, our findings suggest that F. prausnitzii EB-FPDK11 and A. muciniphila EB-AMDK19 have a therapeutic potential in AD, which should be verified in humans.


Assuntos
Dermatite Atópica , Dinitroclorobenzeno , Administração Oral , Akkermansia , Animais , Citocinas/farmacologia , Dermatite Atópica/tratamento farmacológico , Dermatite Atópica/terapia , Dinitroclorobenzeno/farmacologia , Modelos Animais de Doenças , Faecalibacterium prausnitzii , Humanos , Camundongos , Pele/patologia , Verrucomicrobia
5.
Dev Reprod ; 20(3): 197-205, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27796001

RESUMO

Adipose tissue is one of the major endocrine gland. More recently, local production of steroids in adipocytes differentiated from mouse 3T3-L1 cell-line was reported. We hypothesized that rat adipocytes have steroidogenic machinery and the expression patterns of the components might be differentially regulated, depending on the distribution and sex. To verify this hypothesis, we collected the adipose tissues depot- and sex-specifically at postnatal day (PND) 30, and performed quantitative RT-PCRs. In overall aspects, the abundances of the transcripts were lower in the brown adipose of both sexes. 3ß-HSD transcript levels in female abdominal and reproductive adipose, CYP17 transcript levels in female reproductive adipose, 17ß-HSD transcript levels in female abdominal and reproductive adipose, and CYP19 transcript levels in female abdominal adipose were significantly lower than those of male counterparts. Similar to steroidogenic factors, the abundance of the ER-α transcripts were generally lower in the brown adipose of both sexes. ER-ß transcripts were more abundant in male white adipose depots than their female counterparts. The levels of LHR transcripts in female reproductive adipose were significantly higher than those of male counterpart. In conclusion, our study demonstrated that the expressions of steroidogenesis-related genes were depot- and sex-specifically occurred in the immature male and female rat adipose tissues. Our study suggested that the adipose tissues are not only targets but de novo synthesizing sites of sex steroid(s), though the synthesizing activities could be much less than in gonads. Further researches in this field will be helpful for understanding the adipose physiology and for medical application such as sex-specific steroid supplement therapies for older populations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA