Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-36226235

RESUMO

As rapidly accelerating technology, fluorescence guided surgery (FGS) has the potential to place molecular information directly into the surgeon's field of view by imaging administered fluorescent contrast agents in real time, circumnavigating pre-operative MR registration challenges with brain deformation. The most successful implementation of FGS is 5-ALA-PpIX guided glioma resection which has been linked to improved patient outcomes. While FGS may offer direct in-field guidance, fluorescent contrast agent distributions are not as familiar to the surgical community as Gd-MRI uptake, and may provide discordant information from previous Gd-MRI guidance. Thus, a method to assess and validate consistency between fluorescence-labeled tumor regions and Gd-enhanced tumor regions could aid in understanding the correlation between optical agent fluorescence and Gd-enhancement. Herein, we present an approach for comparing whole-brain fluorescence biodistributions with Gd-enhancement patterns on a voxel-by-voxel basis using co-registered fluorescent cryo-volumes and Gd-MRI volumes. In this initial study, a porcine-human glioma xenograft model was administered 5-ALA-PpIX, imaged with MRI, and euthanized 22 hours following 5-ALA administration. Following euthanization, the extracted brain was imaged with the cryo-macrotome system. After image processing steps and non-rigid, point-based registration, the fluorescence cryo-volume and Gd-MRI volume were compared for similarity metrics including: image similarity, tumor shape similarity, and classification similarity. This study serves as a proof-of-principle in validating our screening approach for quantitatively comparing 3D biodistributions between optical agents and Gd-based agents.

2.
Artigo em Inglês | MEDLINE | ID: mdl-34177040

RESUMO

Understanding the uptake and clearance kinetics of new drugs and contrast agents is an important aspect of drug development that typically involves a combination of imaging and analysis of harvested organs. Although these techniques are well-established and can be quantitative, they generally do not preserve high resolution biodistribution information. In this context, fluorescence whole-body cryo-imaging is a promising technique for recovering 3D drug/agent biodistributions at a high resolution throughout an entire study animal at specific time points. A common challenge associated with fluorescence imaging in tissue is that agent signal can be confounded by endogenous fluorescence signal which is often observed in the visible window. One method to address this issue is to acquire hyperspectral images and spectrally unmix agent signal from confounding autofluorescence signals using known spectral bases. Herein, we apply hyperspectral whole-body cryo-imaging and spectral unmixing to examine the distribution of multiple fluorescent agents in excretion organ regions.

3.
Artigo em Inglês | MEDLINE | ID: mdl-34744247

RESUMO

MRI images of gadolinium-based contrast agents (GBCA's) acquired before surgery are often registered to patients and used to guide surgical resection of intracranial tumors. Yet, the accuracy of these MR images in describing the surgical field degrades as surgery progresses; a well-recognized problem which has prompted efforts to develop new techniques that provide updated guidance information on residual tumor location. These efforts span a wide array of technologies, including image updating with deformation models, intraoperative MRI, and fluorescence guided surgery, among others. However, introduction of a straightforward technique that provides surgeons with a current view of GBCA distribution in real time remains an important goal. In this context, development of a fluorescent agent that recapitulates the kinetic behavior of GBCA's could provide familiar information directly in the surgical field in real time. To advance this strategy, we have begun identifying fluorescent contrast agents that show similar kinetic behavior to GBCA's. Using a novel hyperspectral whole body cryo-imaging system, we acquired high-resolution 3-D volumes of the distribution of multiple candidate fluorophores in whole heads bearing orthotopic brain tumors. Preliminary results reveal significant differences in the distribution of candidate optical agents, some of which show strong similarity to the GBCA uptake. Identification and eventual translation of a reliable GBCA-optical analog could improve and simplify surgical resection of brain tumors.

4.
Artigo em Inglês | MEDLINE | ID: mdl-34744248

RESUMO

Short-wave infrared (SWIR/NIR-II) fluorescence imaging has received increased attention for use in fluorescence-guided surgery (FGS) due to the potential for higher resolution imaging of subsurface structures and reduced autofluorescence compared to conventional NIR-I imaging. As with any fluorescence imaging modality introduced in the operating room, an appropriate accounting of contaminating background signal from other light sources in the operating room is an important step. Herein, we report the background signals in the SWIR and NIR-I emitted from commonly-used equipment in the OR, such as ambient and operating lights, LCD screens and surgical guidance systems. These results can guide implementation of protocols to reduce background signal.

5.
Artigo em Inglês | MEDLINE | ID: mdl-31723310

RESUMO

Short-wave infrared imaging in tissue in the 1000-2000 nm range is characterized by reduced photon scatter and comparable or higher absorption compared to the NIR-I regime. These characteristics have implications for the performance of fluorescence molecular tomography (FMT) techniques, potentially improving the resolution of sub-surface structure, possibly at the expense of depth sensitivity. To examine these questions, we have developed a SWIR small animal fluorescence tomography system. This instrument acquires multi-angle SWIR projection images of a stationary platform through a rotating gantry technique. These images are then processed for tomographic reconstruction of the SWIR fluorescence activity. Herein, we describe the development of this system and show multi-angle images from a mouse carcass containing a SWIR-specific fluorophore inclusion.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA