Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Pathog ; 5(12): e1000691, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20011508

RESUMO

African green monkeys (AGM) and other natural hosts for simian immunodeficiency virus (SIV) do not develop an AIDS-like disease following SIV infection. To evaluate differences in the role of SIV-specific adaptive immune responses between natural and nonnatural hosts, we used SIV(agmVer90) to infect vervet AGM and pigtailed macaques (PTM). This infection results in robust viral replication in both vervet AGM and pigtailed macaques (PTM) but only induces AIDS in the latter species. We delayed the development of adaptive immune responses through combined administration of anti-CD8 and anti-CD20 lymphocyte-depleting antibodies during primary infection of PTM (n = 4) and AGM (n = 4), and compared these animals to historical controls infected with the same virus. Lymphocyte depletion resulted in a 1-log increase in primary viremia and a 4-log increase in post-acute viremia in PTM. Three of the four PTM had to be euthanized within 6 weeks of inoculation due to massive CMV reactivation and disease. In contrast, all four lymphocyte-depleted AGM remained healthy. The lymphocyte-depleted AGM showed only a trend toward a prolongation in peak viremia but the groups were indistinguishable during chronic infection. These data show that adaptive immune responses are critical for controlling disease progression in pathogenic SIV infection in PTM. However, the maintenance of a disease-free course of SIV infection in AGM likely depends on a number of mechanisms including non-adaptive immune mechanisms.


Assuntos
Imunidade Adaptativa/imunologia , Chlorocebus aethiops/imunologia , Macaca nemestrina/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Vírus da Imunodeficiência Símia/imunologia , Animais , Antígenos CD20/imunologia , Subpopulações de Linfócitos B/imunologia , Western Blotting , Linfócitos T CD8-Positivos/imunologia , Chlorocebus aethiops/virologia , Imuno-Histoquímica , Imunofenotipagem , Hibridização In Situ , Depleção Linfocítica , Macaca nemestrina/virologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Síndrome de Imunodeficiência Adquirida dos Símios/patologia , Viremia
2.
Comp Med ; 70(1): 87-92, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31948513

RESUMO

Guinea pigs are a premier small animal model for infectious disease research, and chronic indwelling venous access ports may be used to facilitate various procedures. Here we report catheter-related lesions in 5 uninfected Dunkin-Hartley guinea pigs with chronic jugular vein catheters used for imaging studies. Three guinea pigs were found dead with no premonitory signs. At necropsy, there was severe bilateral pulmonary atelectasis due to 20 to 29 mL of pleural effusion resulting from catheter-related thrombosis and cranial vena cava syndrome. In addition, one of these 3 guinea pigs had a polymicrobial catheter infection with abscessation. A 4th clinically normal guinea pig was euthanized at the end of the study, having spontaneously lost its catheter 7 mo prior, and had 17 mL of pleural effusion. The 5th guinea pig was euthanized following pooling of contrast material around the distal catheter in the cranial vena cava on CT. By histology, affected animals had recent and remote thrombosis or fibrosis (or both) of the cranial vena cava and right atrial wall, with osseous and cartilaginous metaplasia. Cranial vena cava syndrome should be considered as a differential for dyspnea or death in chronically catheterized laboratory animals.


Assuntos
Cateteres de Demora/efeitos adversos , Cobaias , Síndrome da Veia Cava Superior/etiologia , Animais , Cateterismo Venoso Central/efeitos adversos , Cateteres de Demora/veterinária , Feminino , Veias Jugulares , Masculino , Síndrome da Veia Cava Superior/veterinária
3.
J Virol ; 82(23): 11577-88, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18829748

RESUMO

African green monkeys (AGM) do not develop overt signs of disease following simian immunodeficiency virus (SIV) infection. While it is still unknown how natural hosts like AGM can cope with this lentivirus infection, a large number of investigations have shown that CD8(+) T-cell responses are critical for the containment of AIDS viruses in humans and Asian nonhuman primates. Here we have compared the phenotypes of T-cell subsets and magnitudes of SIV-specific CD8(+) T-cell responses in vervet AGM chronically infected with SIVagm and rhesus monkeys (RM) infected with SIVmac. In comparison to RM, vervet AGM exhibited weaker signs of immune activation and associated proliferation of CD8(+) T cells as detected by granzyme B, Ki-67, and programmed death 1 staining. By gamma interferon enzyme-linked immunospot assay and intracellular cytokine staining, SIV Gag- and Env-specific immune responses were detectable at variable but lower levels in vervet AGM than in RM. These observations demonstrate that natural hosts like SIV-infected vervet AGM develop SIV-specific T-cell responses, but the disease-free course of infection does not depend on the generation of robust CD8(+) T-cell responses.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Vírus da Imunodeficiência Símia/imunologia , Animais , Proteínas Reguladoras de Apoptose/sangue , Chlorocebus aethiops , Doença Crônica , Granzimas/sangue , Interferon gama/biossíntese , Antígeno Ki-67/sangue , Ativação Linfocitária , Macaca mulatta , RNA Viral/sangue , Fator de Necrose Tumoral alfa/biossíntese
4.
Immunogenetics ; 59(3): 211-23, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17256149

RESUMO

Several macaques species are used for HIV pathogenesis and vaccine studies, and the characterization of their major histocompatibility complex (MHC) class I genes is required to rigorously evaluate the cellular immune responses induced after immunization and/or infection. In this study, we demonstrate that the gene expressing the Mane-A*06 allele of pig-tailed macaques is an orthologue of the locus encoding the Mamu-A*05 allele family in rhesus macaques. Analysis of the distribution of this locus in a cohort of 63 pig-tailed macaques revealed that it encodes an oligomorphic family of alleles, highly prevalent (90%) in the pig-tailed macaque population. Similarly, this locus was very frequently found (62%) in a cohort of 80 Indian rhesus macaques. An orthologous gene was also detected in cynomolgus monkeys originating from four different geographical locations, but was absent in two African monkey species. Expression analysis in pig-tailed macaques revealed that the Mane-A*06 alleles encoded by this locus are transcribed at 10- to 20-fold lower levels than other MHC-A alleles (Mane-A*03 or Mane-A*10). Despite their conservation and high prevalence among Asian macaque species, the alleles of the Mane-A*06 family and, by extension their orthologues in rhesus and cynomolgus monkeys, may only modestly contribute to cellular immune responses in macaques because of their low level of expression.


Assuntos
Evolução Molecular , Frequência do Gene , Genes MHC Classe I , Macaca/genética , Polimorfismo Genético , Alelos , Sequência de Aminoácidos , Animais , Sequência de Bases , Duplicação Gênica , Íntrons , Dados de Sequência Molecular , Filogenia , Homologia de Sequência de Aminoácidos
5.
J Virol ; 76(1): 379-91, 2002 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-11739702

RESUMO

Highly pathogenic simian/human immunodeficiency virus chimeric viruses are known to induce a rapid, irreversible depletion of CD4+ T lymphocytes in the peripheral blood of acutely infected macaque monkeys. To more fully assess the systemic effects of this primary virus infection, specimens were collected serially between days 3 and 21 postinfection from variety of lymphoid tissues (lymph nodes, thymus, and spleen) and gastrointestinal tract and examined by DNA and RNA PCR, in situ hybridization, and immunohistochemical assays. In addition, the lymphoid tissues were evaluated by fluorescence-activated cell sorting. Virus infection was initially detected by DNA PCR on day 3 postinfection in lymph node samples and peaked on day 10 in the T-lymphocyte-rich areas of this tissue. CD4+ T-cell levels remained stable through day 10 in several lymphoid tissue specimens examined but fell precipitously between days 10 and 21. In situ terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling (TUNEL) assays revealed the accumulation of apoptotic cells during the second week of infection in both lymph nodes and thymus, which colocalized, to a large extent, to sites of both virus replication and CD4+ T-lymphocyte loss.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Infecções por HIV/imunologia , HIV-1 , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Vírus da Imunodeficiência Símia , Animais , Apoptose , Contagem de Linfócito CD4 , Contagem de Células , Modelos Animais de Doenças , Infecções por HIV/virologia , HIV-1/genética , HIV-1/patogenicidade , Imuno-Histoquímica , Tecido Linfoide/imunologia , Tecido Linfoide/virologia , Macaca mulatta , Recombinação Genética , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/genética , Vírus da Imunodeficiência Símia/patogenicidade , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA