Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Forensic Sci ; 61(4): 1074-9, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27364290

RESUMO

The increased marketing of fake perfumes has encouraged us to investigate how to identify such products by their chemical characteristics and multivariate analysis. The aim of this study was to present an alternative approach to distinguish original from fake perfumes by means of the investigation of sodium, potassium, chloride ions, and ethanol contents by chemometric tools. For this, 50 perfumes were used (25 original and 25 counterfeit) for the analysis of ions (ion chromatography) and ethanol (gas chromatography). The results demonstrated that the fake perfume had low levels of ethanol and high levels of chloride compared to the original product. The data were treated by chemometric tools such as principal component analysis and linear discriminant analysis. This study proved that the analysis of ethanol is an effective method of distinguishing original from the fake products, and it may potentially be used to assist legal authorities in such cases.

2.
J Inorg Biochem ; 105(5): 624-9, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21443852

RESUMO

Nitric oxide (NO) has a critical role in several physiological and pathophysiological processes. In this paper, the reactions of the nitrosyl complexes of [Ru(bpy)(2)L(NO)](n+) type, where L = SO(3)(2-) and imidazole and bpy = 2,2'-bipiridine, with cysteine and glutathione were studied. The reactions with cysteine and glutathione occurred through the formation of two sequential intermediates, previously described elsewhere, [Ru(bpy)(2)L(NOSR)](n+) and [Ru(bpy)(2)L(NOSR)(2)] (SR = thiol) leading to the final products [Ru(bpy)(2)L(H(2)O)](n+) and free NO. The second order rate constant for the second step of this reaction was calculated for cysteine k(2)(SR(-))=(2.20±0.12)×10(9) M(-1) s(-1) and k(2(RSH))=(154±2) M(-1) s(-1) for L = SO(3)(2-) and k(2)(SR(-))=(1.30±0.23)×10(9) M(-1) s(-1) and k(2)(RSH)=(0.84±0.02) M(-1) s(-1) for L = imidazole; while for glutathione they were k(2)(SR(-))=(6.70±0.32)×10(8) M(-1) s(-1) and k(2)(RSH)=11.8±0.3 M(-1) s(-1) for L = SO(3)(2-) and k(2)(SR(-))=(2.50±0.36)×10(8) M(-1) s(-1) and k(2)(RSH)=0.32±0.01 M(-1) s(-1) for L = imidazole. In all reactions it was possible to detect the release of NO from the complexes, which it is remarkably distinct from other ruthenium metallocompounds described elsewhere with just N(2)O production. These results shine light on the possible key role of NO release mediated by physiological thiols in reaction with these metallonitrosyl ruthenium complexes.


Assuntos
2,2'-Dipiridil/química , Óxido Nítrico/química , Rutênio/química , Compostos de Sulfidrila/química , 2,2'-Dipiridil/metabolismo , Cisteína/química , Cisteína/metabolismo , Glutationa/química , Glutationa/metabolismo , Imidazóis/química , Imidazóis/metabolismo , Cinética , Óxido Nítrico/metabolismo , Compostos de Sulfidrila/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA