RESUMO
Beta vulgaris L. is a biennial plant easily accessible all over the world, rich in various biologically active compounds, especially a class of extremely bioactive pigments known as betalains. These dyes predominate in the pulp and peels of beetroot, which is why they can be valorized in food, medicine or in the textile industry. In this work, betalains extractions were carried out applying 3 sustainable options: (1) dissolving/solubilizing betalains in water; (2) extraction under pressure; (3) extraction assisted by an enzyme/pectinase. The obtained extracts were analyzed in the UV-Vis domain, which allowed their characterization by determining the total monomeric anthocyanins, color density (control), polymeric density and browning index. The HPLC-MS analysis highlighted the extracts composition. The colors characteristics were determined through CIELab measurements. The performances of these 3 extracts, during green dyeing (without mordants), were evaluated according to the color characteristics (L*, a*, b* and K/S) of the dyed wool samples under different conditions: pH, temperature, duration of dyeing and volume of extract and stabilizers (Vitamin E and EDTA). Betalains can be considered acid dyes, with a low affinity for wool, which in a pronounced acidic environment dye the wool in an intense, uniform way and with good resistance to washing and rubbing.
RESUMO
The beetroot peels can be a sustainable source of betalains that can dye the wool materials through green processes based on low water and energy consumption. Green chemistry in the extraction of betalains from colored food waste/peels from red beetroot involved the use of water as a solvent, without other additives. In order for the extract obtained to be able to dye the wool, it was necessary to functionalize betalains or even the wool. Three types of sustainable functionalizations were performed, with (1) acetic acid; (2) ethanol; and (3) arginine. For each functionalization, the mechanism that can justify dyeing the wool in intense colors was elucidated. The characterization of the extract was performed with the data provided by UV-VIS and HPLC-MS analyses. The characterization of the wool dyed with the extract obtained from the red beetroot peels was possible due to the information resulting from the FTIR and CIELab analyses. The functionalizations of betalains and wool in acid environments lead to the most intense red colors. The color varies depending on the pH and the concentration of betalains.