Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mol Psychiatry ; 25(11): 3106, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30705428

RESUMO

In the original version of this article, affiliation 3 was given as: "Division of Life Sciences, State Key Laboratory of Molecular Neuroscience, Hong Kong, University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China". This has now been corrected to: "Division of Life Sciences, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China".Additionally in the 'Data availability' section an incorrect accession code was given. The accession code has now been changed from 'PDB A9X (AnkG:GABARAPL)' to 'PDB 6A9X (AnkG:GABARAP)'.These errors have been corrected in both the PDF and HTML versions of the Article.

2.
Mol Psychiatry ; 25(11): 2800-2817, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-30504823

RESUMO

GABAergic circuits are critical for the synchronization and higher order function of brain networks. Defects in this circuitry are linked to neuropsychiatric diseases, including bipolar disorder, schizophrenia, and autism. Work in cultured neurons has shown that ankyrin-G plays a key role in the regulation of GABAergic synapses on the axon initial segment and somatodendritic domain of pyramidal neurons, where it interacts directly with the GABAA receptor-associated protein (GABARAP) to stabilize cell surface GABAA receptors. Here, we generated a knock-in mouse model expressing a mutation that abolishes the ankyrin-G/GABARAP interaction (Ank3 W1989R) to understand how ankyrin-G and GABARAP regulate GABAergic circuitry in vivo. We found that Ank3 W1989R mice exhibit a striking reduction in forebrain GABAergic synapses resulting in pyramidal cell hyperexcitability and disruptions in network synchronization. In addition, we identified changes in pyramidal cell dendritic spines and axon initial segments consistent with compensation for hyperexcitability. Finally, we identified the ANK3 W1989R variant in a family with bipolar disorder, suggesting a potential role of this variant in disease. Our results highlight the importance of ankyrin-G in regulating forebrain circuitry and provide novel insights into how ANK3 loss-of-function variants may contribute to human disease.


Assuntos
Anquirinas/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Vias Neurais , Prosencéfalo/citologia , Prosencéfalo/metabolismo , Adulto , Idoso , Animais , Anquirinas/genética , Transtorno Bipolar/genética , Transtorno Bipolar/metabolismo , Células Cultivadas , Feminino , Neurônios GABAérgicos/metabolismo , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Sinapses/metabolismo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA