Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Bioresour Technol ; 239: 204-210, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28521230

RESUMO

Several cell disruption methods were tested on Nannochloropsis gaditana, to evaluate their efficiency in terms of cell disintegration, energy input and release of soluble proteins. High-pressure homogenization (HPH) and bead milling were the most efficient with >95% cell disintegration, ±50% (w/w) release of total proteins and low energy input (<0.5kWh.kg-1biomass). Enzymatic treatment required low energy input (<0.34kWh.kg-1biomass), but it only released ±35% protein (w/w). Pulsed Electric Field (PEF) was neither energy-efficient (10.44kWh.kg-1biomass) nor successful for protein release (only 10% proteins w/w) and cell disintegration. The release of proteins after applying HPH and bead milling always required less intensive operating conditions for cell disruption. The energy cost per unit of released protein ranged from 0.15-0.25 €.kgProtein-1 in case of HPH, and up to 2-20 €.kgProtein-1 in case of PEF.


Assuntos
Proteínas de Plantas , Estramenópilas , Biomassa , Parede Celular , Microalgas , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA