Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(5)2023 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-36902407

RESUMO

Multiple sclerosis (MS) is a CNS inflammatory demyelinating disease. Recent investigations highlight the gut-brain axis as a communication network with crucial implications in neurological diseases. Thus, disrupted intestinal integrity allows the translocation of luminal molecules into systemic circulation, promoting systemic/brain immune-inflammatory responses. In both, MS and its preclinical model, the experimental autoimmune encephalomyelitis (EAE) gastrointestinal symptoms including "leaky gut" have been reported. Oleacein (OLE), a phenolic compound from extra virgin olive oil or olive leaves, harbors a wide range of therapeutic properties. Previously, we showed OLE effectiveness preventing motor defects and inflammatory damage of CNS tissues on EAE mice. The current studies examine its potential protective effects on intestinal barrier dysfunction using MOG35-55-induced EAE in C57BL/6 mice. OLE decreased EAE-induced inflammation and oxidative stress in the intestine, preventing tissue injury and permeability alterations. OLE protected from EAE-induced superoxide anion and accumulation of protein and lipid oxidation products in colon, also enhancing its antioxidant capacity. These effects were accompanied by reduced colonic IL-1ß and TNFα levels in OLE-treated EAE mice, whereas the immunoregulatory cytokines IL-25 and IL-33 remained unchanged. Moreover, OLE protected the mucin-containing goblet cells in colon and the serum levels of iFABP and sCD14, markers that reflect loss of intestinal epithelial barrier integrity and low-grade systemic inflammation, were significantly reduced. These effects on intestinal permeability did not draw significant differences on the abundance and diversity of gut microbiota. However, OLE induced an EAE-independent raise in the abundance of Akkermansiaceae family. Consistently, using Caco-2 cells as an in vitro model, we confirmed that OLE protected against intestinal barrier dysfunction induced by harmful mediators present in both EAE and MS. This study proves that the protective effect of OLE in EAE also involves normalizing the gut alterations associated to the disease.


Assuntos
Encefalomielite Autoimune Experimental , Iridoides , Olea , Animais , Humanos , Camundongos , Células CACO-2 , Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/metabolismo , Inflamação/metabolismo , Iridoides/uso terapêutico , Camundongos Endogâmicos C57BL , Esclerose Múltipla/metabolismo
2.
Antioxidants (Basel) ; 12(2)2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36829791

RESUMO

Microglia, the resident macrophage-like population in the CNS, plays an important role in the pathogenesis of many neurodegenerative disorders. Nectandra genus is known to produce different metabolites with anti-inflammatory, anti-oxidant and analgesic properties. Although the species Nectandra angustifolia is popularly used for the treatment of different types of inflammatory processes, its biological effects on neuroinflammation have not yet been addressed. In this study, we have investigated the role of a Nectandra angustifolia ethanolic extract (NaE) in lipopolysaccharide (LPS)-induced neuroinflammation in vitro and in vivo. In LPS-activated BV2 microglial cells, NaE significantly reduced the induced proinflammatory mediators TNF-α, IL-1ß, IL-6, COX-2 and iNOS, as well as NO accumulation, while it promoted IL-10 secretion and YM-1 expression. Likewise, reduced CD14 expression levels were detected in microglial cells in the NaE+LPS group. NaE also attenuated LPS-induced ROS and lipid peroxidation build-up in BV2 cells. Mechanistically, NaE prevented NF-κB and MAPKs phosphorylation, as well as NLRP3 upregulation when added before LPS stimulation, although it did not affect the level of some proteins related to antioxidant defense such as Keap-1 and HO-1. Additionally, we observed that NaE modulated some activated microglia functions, decreasing cell migration, without affecting their phagocytic capabilities. In LPS-injected mice, NaE pre-treatment markedly suppressed the up-regulated TNF-α, IL-6 and IL-1ß mRNA expression induced by LPS in brain. Our findings indicate that NaE is beneficial in preventing the neuroinflammatory response both in vivo and in vitro. NaE may regulate microglia homeostasis, not only restraining activation of LPS towards the M1 phenotype but promoting an M2 phenotype.

3.
Antioxidants (Basel) ; 9(11)2020 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-33233421

RESUMO

Oxidative stress and proinflammatory cytokines are factors affecting multiple sclerosis (MS) disease progression. Oleacein (OLE), an olive secoiridoid, possesses powerful antioxidant and anti-inflammatory activities, which suggests its potential application to treat neuroinflammatory disorders. Herein, we investigated the impact of OLE on the main clinic-pathological features of experimental autoimmune encephalomyelitis (EAE), an animal model for MS, including paralysis, demyelination, central nervous system (CNS) inflammation/oxidative stress and blood-brain barrier (BBB) breakdown. METHODS: Mice were immunized with the myelin oligodendrocyte glycoprotein peptide, MOG35-55, to induce EAE, and OLE was administrated from immunization day. Serum, optic nerve, spinal cord and cerebellum were collected to evaluate immunomodulatory activities at a systemic level, as well as within the CNS. Additionally, BV2 microglia and the retinal ganglion cell line RGC-5 were used to confirm the direct effect of OLE on CNS-resident cells. RESULTS: We show that OLE treatment effectively reduced clinical score and histological signs typical of EAE. Histological evaluation confirmed a decrease in leukocyte infiltration, demyelination, BBB disruption and superoxide anion accumulation in CNS tissues of OLE-treated EAE mice compared to untreated ones. OLE significantly decreased expression of proinflammatory cytokines (IL-13, TNFα, GM-CSF, MCP-1 and IL-1ß), while it increased the anti-inflammatory cytokine IL-10. Serum levels of anti-MOG35-55 antibodies were also lower in OLE-treated EAE mice. Further, OLE significantly diminished the presence of oxidative system parameters, while upregulated the ROS disruptor, Sestrin-3. Mechanistically, OLE prevented NLRP3 expression, phosphorylation of p65-NF-κB and reduced the synthesis of proinflammatory mediators induced by relevant inflammatory stimuli in BV2 cells. OLE did not affect viability or the phagocytic capabilities of BV2 microglia. In addition, apoptosis of RGC-5 induced by oxidative stressors was also prevented by OLE. CONCLUSION: Altogether, our results show that the antioxidant and anti-inflammatory OLE has neuroprotective effects in the CNS of EAE mice, pointing out this natural product as a candidate to consider for research on MS treatments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA