Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
J Enzyme Inhib Med Chem ; 38(1): 2231169, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37401012

RESUMO

Trypanosoma cruzi is the causative agent of American trypanosomiasis, which mainly affects populations in Latin America. Benznidazole is used to control the disease, with severe effects in patients receiving this chemotherapy. Previous studies have demonstrated the inhibition of triosephosphate isomerase from T. cruzi, but cellular enzyme inhibition has yet to be established. This study demonstrates that rabeprazole inhibits both cell viability and triosephosphate isomerase activity in T. cruzi epimastigotes. Our results show that rabeprazole has an IC50 of 0.4 µM, which is 14.5 times more effective than benznidazole. Additionally, we observed increased levels of methyl-glyoxal and advanced glycation end products after the inhibition of cellular triosephosphate isomerase by rabeprazole. Finally, we demonstrate that the inactivation mechanisms of rabeprazole on triosephosphate isomerase of T. cruzi can be achieved through the derivatization of three of its four cysteine residues. These results indicate that rabeprazole is a promising candidate against American trypanosomiasis.


Assuntos
Doença de Chagas , Tripanossomicidas , Trypanosoma cruzi , Humanos , Triose-Fosfato Isomerase/química , Triose-Fosfato Isomerase/farmacologia , Rabeprazol/farmacologia , Rabeprazol/uso terapêutico , Reposicionamento de Medicamentos , Doença de Chagas/tratamento farmacológico , Tripanossomicidas/farmacologia
2.
Appl Microbiol Biotechnol ; 106(4): 1475-1492, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35092453

RESUMO

The protease catalytic subunit of the nuclear inclusion protein A from tobacco etch virus (TEVp) is widely used to remove tags and fusion proteins from recombinant proteins. Some intrinsic drawbacks to its recombinant production have been studied for many years, such as low solubility, auto-proteolysis, and instability. Some point mutations have been incorporated in the amino acid protease sequence to improve its production. Here, a comprehensive review of each mutation reported so far has been made to incorporate them into a mutant called TEVp7M with a total of seven changes. This mutant with a His7tag at N-terminus was produced with remarkable purification yields (55 mg/L of culture) from the soluble fraction in a single step affinity purification. The stability of His7-TEVp7M was analyzed and compared with the single mutant TEVp S219V, making evident that His7-TEVp7M shows very constant thermal stability against pH variation, whereas TEVp S219V is highly sensitive to this change. The cleavage reaction was optimized by determining the amount of protease that could cleave a 100-fold excess substrate in the shortest possible time at 30 °C. Under these conditions, His7-TEVp7M was able to cleave His-tag in the buffers commonly used for affinity purification. Finally, a structural analysis of the mutations showed that four of them increased the polarity of the residues involved and, consequently, showed increased solubility of TEVp and fewer hydrophobic regions exposed to the solvent. Taken together, the seven changes studied in this work improved stability, solubility, and activity of TEVp producing enough protease to digest large amounts of tags or fusion proteins. KEY POINTS: • Production of excellent yields of a TEVp (TEVp7M) by incorporation of seven changes. • His-tag removal in an excess substrate in the common buffers used for purification. • Incorporated mutations improve polarity, stability, and activity of TEVp7M.


Assuntos
Endopeptidases , Cromatografia de Afinidade , Endopeptidases/genética , Endopeptidases/metabolismo , Proteólise , Proteínas Recombinantes de Fusão/metabolismo
3.
Molecules ; 27(24)2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36557996

RESUMO

Rhipicephalus microplus, the "common cattle tick", is the most important ectoparasite in livestock worldwide due to the economic and health losses it produces. This tick is a vector for pathogens of several tick-borne diseases. In Latin American countries, damages reach approximately USD 500 million annually due to tick infections, as well as tick-borne diseases. Currently, resistant populations for every chemical group of acaricides have been reported, posing a serious problem for tick control. This study aims to find new alternatives for controlling resistant ticks with compounds derived from small synthetic organic molecules and natural origins. Using BME26 embryonic cells, we performed phenotypic screening of 44 natural extracts from 10 Mexican plants used in traditional medicine, and 33 compounds selected from our chemical collection. We found 10 extracts and 13 compounds that inhibited cell growth by 50% at 50 µg/mL and 100 µM, respectively; the dose-response profile of two of them was characterized, and these compounds were assayed in vitro against different life stages of Rhipicephalus microplus. We also performed a target-directed screening of the activity of triosephosphate isomerase, using 86 compounds selected from our chemical collection. In this collection, we found the most potent and selective inhibitor of tick triosephosphate isomerase reported until now. Two other compounds had a potent acaricidal effect in vitro using adults and larvae when compared with other acaricides such as ivermectin and Amitraz. Those compounds were also selective to the ticks compared with the cytotoxicity in mammalian cells like macrophages or bovine spermatozoids. They also had a good toxicological profile, resulting in promising acaricidal compounds for tick control in cattle raising.


Assuntos
Acaricidas , Doenças dos Bovinos , Rhipicephalus , Doenças Transmitidas por Carrapatos , Animais , Bovinos , Acaricidas/farmacologia , Triose-Fosfato Isomerase , Extratos Vegetais/química , Doenças dos Bovinos/parasitologia , Larva , Mamíferos
4.
Biochem Biophys Res Commun ; 503(4): 3017-3022, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30143261

RESUMO

Kinetic stability of proteins determines their susceptibility to irreversibly unfold in a time-dependent process, and therefore its half-life. A residue displacement analysis of temperature-induced unfolding molecular dynamics simulations was recently employed to define the thermal flexibility of proteins. This property was found to be correlated with the activation energy barrier (Eact) separating the native from the transition state in the denaturation process. The Eact was determined from the application of a two-state irreversible model to temperature unfolding experiments using differential scanning calorimetry (DSC). The contribution of each residue to the thermal flexibility of proteins is used here to propose multiple mutations in triosephosphate isomerase (TIM) from Trypanosoma brucei (TbTIM) and Trypanosoma cruzi (TcTIM), two parasites closely related by evolution. These two enzymes, taken as model systems, have practically identical structure but large differences in their kinetic stability. We constructed two functional TIM variants with more than twice and less than half the activation energy of their respective wild-type reference structures. The results show that the proposed strategy is able to identify the crucial residues for the kinetic stability in these enzymes. As it occurs with other protein properties reflecting their complex behavior, kinetic stability appears to be the consequence of an extensive network of inter-residue interactions, acting in a concerted manner. The proposed strategy to design variants can be used with other proteins, to increase or decrease their functional half-life.


Assuntos
Engenharia de Proteínas/métodos , Triose-Fosfato Isomerase/química , Triose-Fosfato Isomerase/genética , Trypanosoma brucei brucei/enzimologia , Trypanosoma cruzi/enzimologia , Estabilidade Enzimática , Cinética , Modelos Moleculares , Mutação , Desnaturação Proteica , Desdobramento de Proteína , Temperatura , Trypanosoma brucei brucei/química , Trypanosoma brucei brucei/genética , Trypanosoma cruzi/química , Trypanosoma cruzi/genética
5.
Biochim Biophys Acta Gen Subj ; 1862(6): 1401-1409, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29571745

RESUMO

Human triosephosphate isomerase (TIM) deficiency is a very rare disease, but there are several mutations reported to be causing the illness. In this work, we produced nine recombinant human triosephosphate isomerases which have the mutations reported to produce TIM deficiency. These enzymes were characterized biophysically and biochemically to determine their kinetic and stability parameters, and also to substitute TIM activity in supporting the growth of an Escherichia coli strain lacking the tim gene. Our results allowed us to rate the deleteriousness of the human TIM mutants based on the type and severity of the alterations observed, to classify four "unknown severity mutants" with altered residues in positions 62, 72, 122 and 154 and to explain in structural terms the mutation V231M, the most affected mutant from the kinetic point of view and the only homozygous mutation reported besides E104D.


Assuntos
Anemia Hemolítica Congênita não Esferocítica/enzimologia , Erros Inatos do Metabolismo dos Carboidratos/enzimologia , Mutação , Triose-Fosfato Isomerase/química , Triose-Fosfato Isomerase/deficiência , Triose-Fosfato Isomerase/metabolismo , Anemia Hemolítica Congênita não Esferocítica/genética , Erros Inatos do Metabolismo dos Carboidratos/genética , Estabilidade Enzimática , Humanos , Cinética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Conformação Proteica , Triose-Fosfato Isomerase/genética
6.
Proteins ; 85(4): 571-579, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28002620

RESUMO

The effect of specific residues on the kinetic stability of two closely related triosephosphate isomerases (from Trypanosoma cruzi, TcTIM and Trypanosoma brucei, TbTIM) has been studied. Based on a comparison of their ß-turn occurrence, we engineered two chimerical enzymes where their super secondary ß-loop-α motifs 2 ((ßα)2 ) were swapped. Differential scanning calorimetry (DSC) experiments showed that the (ßα)2 motif of TcTIM inserted into TbTIM (2Tc) increases the kinetic stability. On the other hand, the presence of the (ßα)2 motif of TbTIM inserted into TcTIM (2Tb) gave a chimerical protein difficult to purify in soluble form and with a significantly reduced kinetic stability. The comparison of the contact maps of the (ßα)2 of TbTIM and TcTIM showed differences in the contact pattern of residues 43 and 49. In TcTIM these residues are prolines, located at the N-terminal of loop-2 and the C-terminal of α-helix-2. Twelve mutants were engineered involving residues 43 and 49 to study the effect over the unfolding activation energy barrier (EA ). A systematic analysis of DSC data showed a large decrease on the EA of TcTIM (ΔEA ranging from 468 to 678 kJ/mol) when the single and double proline mutations are present. The relevance of Pro43 to the kinetic stability is also revealed by mutation S43P, which increased the free energy of the transition state of TbTIM by 17.7 kJ/mol. Overall, the results indicate that protein kinetic stability can be severely affected by punctual mutations, disturbing the complex network of interactions that, in concerted action, determine protein stability. Proteins 2017; 85:571-579. © 2016 Wiley Periodicals, Inc.


Assuntos
Prolina/química , Proteínas de Protozoários/química , Triose-Fosfato Isomerase/química , Trypanosoma brucei brucei/química , Trypanosoma cruzi/química , Sequência de Aminoácidos , Sítios de Ligação , Clonagem Molecular , Estabilidade Enzimática , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Gliceraldeído 3-Fosfato/química , Gliceraldeído 3-Fosfato/metabolismo , Cinética , Modelos Moleculares , Mutação , Prolina/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Engenharia de Proteínas , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Relação Estrutura-Atividade , Especificidade por Substrato , Termodinâmica , Triose-Fosfato Isomerase/genética , Triose-Fosfato Isomerase/metabolismo , Trypanosoma brucei brucei/enzimologia , Trypanosoma brucei brucei/genética , Trypanosoma cruzi/enzimologia , Trypanosoma cruzi/genética
7.
Proteins ; 85(7): 1190-1211, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28378917

RESUMO

Triosephosphate isomerase (TIM) is a ubiquitous enzyme, which appeared early in evolution. TIM is responsible for obtaining net ATP from glycolysis and producing an extra pyruvate molecule for each glucose molecule, under aerobic and anaerobic conditions. It is placed in a metabolic crossroad that allows a quick balance of the triose phosphate aldolase produced by glycolysis, and is also linked to lipid metabolism through the alternation of glycerol-3-phosphate and the pentose cycle. TIM is one of the most studied enzymes with more than 199 structures deposited in the PDB. The interest for this enzyme stems from the fact that it is involved in glycolysis, but also in aging, human diseases and metabolism. TIM has been a target in the search for chemical compounds against infectious diseases and is a model to study catalytic features. Until February 2017, 62% of all residues of the protein have been studied by mutagenesis and/or using other approaches. Here, we present a detailed and comprehensive recompilation of the reported effects on TIM catalysis, stability, druggability and human disease produced by each of the amino acids studied, contributing to a better understanding of the properties of this fundamental protein. The information reviewed here shows that the role of the noncatalytic residues depend on their molecular context, the delicate balance between the short and long-range interactions in concerted action determining the properties of the protein. Each protein should be regarded as a unique entity that has evolved to be functional in the organism to which it belongs. Proteins 2017; 85:1190-1211. © 2017 Wiley Periodicals, Inc.


Assuntos
Inibidores Enzimáticos/química , Triose-Fosfato Isomerase/química , Sequência de Aminoácidos , Biocatálise , Domínio Catalítico , Estabilidade Enzimática , Humanos , Cinética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Relação Estrutura-Atividade , Especificidade por Substrato , Triose-Fosfato Isomerase/antagonistas & inibidores , Triose-Fosfato Isomerase/genética , Triose-Fosfato Isomerase/metabolismo
8.
Molecules ; 22(5)2017 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-28481276

RESUMO

A series of fifty arylideneketones and thiazolidenehydrazines was evaluated against Leishmania infantum and Leishmania braziliensis. Furthermore, new simplified thiazolidenehydrazine derivatives were evaluated against Trypanosoma cruzi. The cytotoxicity of the active compounds on non-infected fibroblasts or macrophages was established in vitro to evaluate the selectivity of their anti-parasitic effects. Seven thiazolidenehydrazine derivatives and ten arylideneketones had good activity against the three parasites. The IC50 values for T. cruzi and Leishmania spp. ranged from 90 nM-25 µM. Eight compounds had multi-trypanocidal activity against T. cruzi and Leishmania spp. (the etiological agents of cutaneous and visceral forms). The selectivity of these active compounds was better than the three reference drugs: benznidazole, glucantime and miltefosine. They also had low toxicity when tested in vivo on zebrafish. Trying to understand the mechanism of action of these compounds, two possible molecular targets were investigated: triosephosphate isomerase and cruzipain. We also used a molecular stripping approach to elucidate the minimal structural requirements for their anti-T. cruzi activity.


Assuntos
Doença de Chagas/tratamento farmacológico , Leishmania braziliensis/crescimento & desenvolvimento , Leishmania infantum/crescimento & desenvolvimento , Leishmaniose Cutânea/tratamento farmacológico , Leishmaniose Visceral/dietoterapia , Tripanossomicidas , Trypanosoma cruzi/crescimento & desenvolvimento , Animais , Linhagem Celular , Doença de Chagas/metabolismo , Doença de Chagas/patologia , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Humanos , Hidrazinas , Cetonas , Leishmaniose Cutânea/metabolismo , Leishmaniose Cutânea/patologia , Leishmaniose Visceral/metabolismo , Leishmaniose Visceral/patologia , Camundongos , Tiazolidinas , Tripanossomicidas/síntese química , Tripanossomicidas/química , Tripanossomicidas/farmacologia , Peixe-Zebra
9.
Molecules ; 20(8): 14595-610, 2015 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-26274947

RESUMO

The current pharmacological Chagas disease treatments, using Nifurtimox or Benznidazole, show limited therapeutic results and are associated with potential side effects, like mutagenicity. Using random screening we have identified new chemotypes that were able to inhibit relevant targets of the Trypanosoma cruzi. We found 3H-[1,2]dithioles with the ability to inhibit Trypanosoma cruzi triosephosphate isomerase (TcTIM). Herein, we studied the structural modifications of this chemotype to analyze the influence of volume, lipophilicity and electronic properties in the anti-T. cruzi activity. Their selectivity to parasites vs. mammalian cells was also examined. To get insights into a possible mechanism of action, the inhibition of the enzymatic activity of TcTIM and cruzipain, using the isolated enzymes, and the inhibition of membrane sterol biosynthesis and excreted metabolites, using the whole parasite, were achieved. We found that this structural framework is interesting for the generation of innovative drugs for the treatment of Chagas disease.


Assuntos
Tolueno/análogos & derivados , Tripanossomicidas/química , Tripanossomicidas/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Animais , Linhagem Celular , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Macrófagos/efeitos dos fármacos , Camundongos , Esteróis/antagonistas & inibidores , Esteróis/biossíntese , Tolueno/síntese química , Tolueno/química , Tolueno/farmacologia , Tripanossomicidas/síntese química , Trypanosoma cruzi/metabolismo
10.
Proteins ; 82(2): 323-35, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23966267

RESUMO

It is generally assumed that the amino acids that exist in all homologous enzymes correspond to residues that participate in catalysis, or that are essential for folding and stability. Although this holds for catalytic residues, the function of conserved noncatalytic residues is not clear. It is not known if such residues are of equal importance and have the same role in different homologous enzymes. In humans, the E104D mutation in triosephosphate isomerase (TIM) is the most frequent mutation in the autosomal diseases named "TPI deficiencies." We explored if the E104D mutation has the same impact in TIMs from four different organisms (Homo sapiens, Giardia lamblia, Trypanosoma cruzi, and T. brucei). The catalytic properties were not significantly affected by the mutation, but it affected the rate and extent of formation of active dimers from unfolded monomers differently. Scanning calorimetry experiments indicated that the mutation was in all cases destabilizing, but the mutation effect on rates of irreversible denaturation and transition-state energetics were drastically dependent on the TIM background. For instance, the E104D mutation produce changes in activation energy ranging from 430 kJ mol(-1) in HsTIM to -78 kJ mol(-1) in TcTIM. Thus, in TIM the role of a conserved noncatalytic residue is drastically dependent on its molecular background. Accordingly, it would seem that because each protein has a particular sequence, and a distinctive set of amino acid interactions, it should be regarded as a unique entity that has evolved for function and stability in the organisms to which it belongs.


Assuntos
Proteínas de Protozoários/química , Triose-Fosfato Isomerase/química , Sequência de Aminoácidos , Substituição de Aminoácidos , Sequência Conservada , Cristalografia por Raios X , Entropia , Estabilidade Enzimática , Giardia lamblia/enzimologia , Humanos , Cinética , Modelos Moleculares , Desdobramento de Proteína , Proteínas de Protozoários/genética , Homologia Estrutural de Proteína , Triose-Fosfato Isomerase/genética , Trypanosoma brucei brucei/enzimologia , Trypanosoma cruzi/enzimologia
11.
J Enzyme Inhib Med Chem ; 29(2): 198-204, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23406473

RESUMO

CONTEXT: Triosephosphate isomerase (TIM) is a ubiquitous enzyme that has been targeted for the discovery of new small molecular weight compounds used against Trypanosoma cruzi, the causative agent of Chagas disease. We have identified phenazine and 1,2,6-thiadiazine chemotypes as novel inhibitors of TIM from T. cruzi (TcTIM). OBJECTIVE: Study the mechanism of TcTIM inhibition by a phenazine derivative and by a 1,2,6-thiadiazine derivative. METHODS: We performed biochemical and theoretical molecular docking studies to characterize the interaction of the derivatives with wild-type and mutant TcTIM. RESULTS AND CONCLUSION: At low micromolar concentrations, the compounds induce highly selective irreversible inactivation of parasitic TIM. The molecular docking simulations indicate that the phenazine derivative likely interferes with the association of the two monomers of the dimeric enzyme by locating at the dimer interface, while 1,2,6-thiadiazine could act as an inhibitor binding to a region surrounding Cys-118.


Assuntos
Antiprotozoários/farmacologia , Inibidores Enzimáticos/farmacologia , Fenazinas/farmacologia , Tiadiazinas/farmacologia , Triose-Fosfato Isomerase/antagonistas & inibidores , Trypanosoma cruzi/efeitos dos fármacos , Antiprotozoários/química , Ligação Competitiva , Doença de Chagas/tratamento farmacológico , Eletroforese em Gel de Poliacrilamida , Inibidores Enzimáticos/química , Escherichia coli/genética , Modelos Biológicos , Simulação de Acoplamento Molecular , Estrutura Molecular , Testes de Sensibilidade Parasitária , Fenazinas/química , Ligação Proteica , Dobramento de Proteína , Multimerização Proteica , Tiadiazinas/química , Triose-Fosfato Isomerase/química , Triose-Fosfato Isomerase/genética , Trypanosoma cruzi/enzimologia
12.
Int J Mol Sci ; 15(12): 22214-26, 2014 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-25474090

RESUMO

In a previous phylogenetic study of the family of pyruvate kinase, we found one cluster with Glu117 and another with Lys117. Those sequences with Glu117 have Thr113 and are K+-dependent, whereas those with Lys117 have Leu113 and are K+-independent. The carbonyl oxygen of Thr113 is one of the residues that coordinate K+ in the active site. Even though the side chain of Thr113 does not participate in binding K+, the strict co-evolution between position 117 and 113 suggests that T113 may be the result of the evolutionary pressure to maintain the selectivity of pyruvate kinase activity for K+. Thus, we explored if the replacement of Thr113 by Leu alters the characteristics of the K+ binding site. We found that the polarity of the residue 113 is central in the partition of K+ into its site and that the substitution of Thr for Leu changes the ion selectivity for the monovalent cation with minor changes in the binding of the substrates. Therefore, Thr113 is instrumental in the selectivity of pyruvate kinase for K+.


Assuntos
Potássio/metabolismo , Piruvato Quinase/química , Piruvato Quinase/metabolismo , Difosfato de Adenosina/metabolismo , Animais , Sítios de Ligação , Domínio Catalítico , Dimetil Sulfóxido/metabolismo , Ativação Enzimática , Íons , Magnésio/metabolismo , Modelos Moleculares , Músculos/enzimologia , Proteínas Mutantes/metabolismo , Fosfoenolpiruvato/metabolismo , Coelhos , Especificidade por Substrato , Termodinâmica , Água/metabolismo
13.
J Enzyme Inhib Med Chem ; 28(5): 981-9, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22803666

RESUMO

CONTEXT: Triosephosphate isomerase (TIM) is a ubiquitous enzyme that has been targeted for the discovery of small molecular weight compounds with potential use against Trypanosoma cruzi, the causative agent of Chagas disease. We have identified a new selective inhibitor chemotype of TIM from T. cruzi (TcTIM), 1,2,4-thiadiazol-5(4H)-one. OBJECTIVE: Study the mechanism of TcTIM inhibition by a 1,2,4-thiadiazol derivative. METHODS: We performed the biochemical characterization of the interaction of the 1,2,4-thiadiazol derivative with the wild-type and mutant TcTIMs, using DOSY-NMR and MS experiments. Studies of T. cruzi growth inhibition were additionally carried out. RESULTS AND CONCLUSION: At low micromolar concentrations, the compound induces highly selective irreversible inactivation of TcTIM through non-covalent binding. Our studies indicate that it interferes with the association of the two monomers of the dimeric enzyme. We also show that it inhibits T. cruzi growth in culture.


Assuntos
Inibidores Enzimáticos/farmacologia , Tiadiazóis/farmacologia , Triose-Fosfato Isomerase/antagonistas & inibidores , Trypanosoma cruzi/enzimologia , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade , Tiadiazóis/síntese química , Tiadiazóis/química , Triose-Fosfato Isomerase/metabolismo , Trypanosoma cruzi/efeitos dos fármacos , Trypanosoma cruzi/crescimento & desenvolvimento
14.
Future Med Chem ; 13(8): 701-714, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33648346

RESUMO

Aim: We report the synthesis and biological evaluation of a small library of 15 functionalized 3-styryl-2-pyrazolines and pyrazoles, derived from curcuminoids, as trypanosomicidal agents. Methods & results: The compounds were prepared via a cyclization reaction between the corresponding curcuminoids and the appropriate hydrazines. All of the derivatives synthesized were investigated for their trypanosomicidal activities. Compounds 4a and 4e showed significant activity against epimastigotes of Trypanosoma cruzi, with IC50 values of 5.0 and 4.2 µM, respectively, accompanied by no toxicity to noncancerous mammalian cells. Compound 6b was found to effectively inhibit T. cruzi triosephosphate isomerase. Conclusion: The up to 16-fold higher potency of these derivatives compared with their curcuminoid precursors makes them a promising new family of T. cruzi inhibitors.


Assuntos
Doença de Chagas/tratamento farmacológico , Curcumina/química , Inibidores Enzimáticos/síntese química , Pirazóis/síntese química , Triose-Fosfato Isomerase/antagonistas & inibidores , Tripanossomicidas/síntese química , Trypanosoma cruzi/efeitos dos fármacos , Animais , Ciclização , Diarileptanoides/química , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/farmacologia , Humanos , Hidrazinas/química , Macrófagos/citologia , Camundongos , Simulação de Acoplamento Molecular , Testes de Sensibilidade Parasitária , Ligação Proteica , Pirazóis/farmacologia , Relação Estrutura-Atividade , Tripanossomicidas/farmacologia
15.
Front Cell Infect Microbiol ; 11: 641356, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33937094

RESUMO

Protein phosphorylation and dephosphorylation are increasingly recognized as important processes for regulating multiple physiological mechanisms. Phosphorylation is carried out by protein kinases and dephosphorylation by protein phosphatases. Phosphoprotein phosphatases (PPPs), one of three families of protein serine/threonine phosphatases, have great structural diversity and are involved in regulating many cell functions. PP2C, a type of PPP, is found in Leishmania, a dimorphic protozoan parasite and the causal agent of leishmaniasis. The aim of this study was to clone, purify, biochemically characterize and quantify the expression of PP2C in Leishmania mexicana (LmxPP2C). Recombinant LmxPP2C dephosphorylated a specific threonine (with optimal activity at pH 8) in the presence of the manganese divalent cation (Mn+2). LmxPP2C activity was inhibited by sanguinarine (a specific inhibitor) but was unaffected by protein tyrosine phosphatase inhibitors. Western blot analysis indicated that anti-LmxPP2C antibodies recognized a molecule of 45.2 kDa. Transmission electron microscopy with immunodetection localized LmxPP2C in the flagellar pocket and flagellum of promastigotes but showed poor staining in amastigotes. Interestingly, LmxPP2C belongs to the ortholog group OG6_142542, which contains only protozoa of the family Trypanosomatidae. This suggests a specific function of the enzyme in the flagellar pocket of these microorganisms.


Assuntos
Leishmania mexicana , Leishmania , Leishmaniose , Humanos , Leishmania/metabolismo , Leishmania mexicana/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Fosforilação , Serina
16.
Biomolecules ; 10(7)2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32679775

RESUMO

Therapeutic strategies for the treatment of any severe disease are based on the discovery and validation of druggable targets. The human genome encodes only 600-1500 targets for small-molecule drugs, but posttranslational modifications lead to a considerably larger druggable proteome. The spontaneous conversion of asparagine (Asn) residues to aspartic acid or isoaspartic acid is a frequent modification in proteins as part of the process called deamidation. Triosephosphate isomerase (TIM) is a glycolytic enzyme whose deamidation has been thoroughly studied, but the prospects of exploiting this phenomenon for drug design remain poorly understood. The purpose of this study is to demonstrate the properties of deamidated human TIM (HsTIM) as a selective molecular target. Using in silico prediction, in vitro analyses, and a bacterial model lacking the tim gene, this study analyzed the structural and functional differences between deamidated and nondeamidated HsTIM, which account for the efficacy of this protein as a druggable target. The highly increased permeability and loss of noncovalent interactions of deamidated TIM were found to play a central role in the process of selective enzyme inactivation and methylglyoxal production. This study elucidates the properties of deamidated HsTIM regarding its selective inhibition by thiol-reactive drugs and how these drugs can contribute to the development of cell-specific therapeutic strategies for a variety of diseases, such as COVID-19 and cancer.


Assuntos
Infecções por Coronavirus/tratamento farmacológico , Inibidores Enzimáticos/farmacologia , Neoplasias/tratamento farmacológico , Pneumonia Viral/tratamento farmacológico , Bibliotecas de Moléculas Pequenas/farmacologia , Triose-Fosfato Isomerase/antagonistas & inibidores , Amidas/antagonistas & inibidores , Amidas/metabolismo , COVID-19 , Cristalografia por Raios X , Inibidores Enzimáticos/química , Humanos , Modelos Moleculares , Mutação , Pandemias , Proteoma/antagonistas & inibidores , Proteoma/genética , Proteoma/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Bibliotecas de Moléculas Pequenas/química , Triose-Fosfato Isomerase/química , Triose-Fosfato Isomerase/metabolismo
17.
Biochim Biophys Acta ; 1784(11): 1493-500, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18620084

RESUMO

In the native state several proteins exhibit a quenching of fluorescence of their tryptophans. We studied triosephosphate isomerase from Giardia lamblia (GlTIM) to dissect the mechanisms that account for the quenching of fluorescence of its Trp. GlTIM contains four Trp per monomer (Trp75, Trp162, Trp173, and Trp196) distributed throughout the 3D structure. The fluorescence of the denatured enzyme is 3-fold higher than that of native GlTIM. To ascertain the origin of this phenomenon, single and triple mutants of Trp per Phe were made. The intrinsic fluorescence was determined, and the data were interpreted on the basis of the crystal structure of the enzyme. Our data show that the fluorescence of all Trp residues is quenched through two different mechanisms. In one, fluorescence is quenched by aromatic-aromatic interactions due to the proximity and orientation of the indole groups of Trp196 and Trp162. The magnitude of the quenching of fluorescence in Trp162 is higher than in the other three Trp. Fluorescence quenching is also due to energy transfer to the charged residues that surround Trp 75, 173 and 196. Further analysis of the fluorescence of GlTIM showed that, among TIMs from other parasites, Trp at position 12 exhibits rather unique properties.


Assuntos
Giardia lamblia/enzimologia , Triose-Fosfato Isomerase/química , Triptofano/metabolismo , Animais , Dicroísmo Circular , Transferência de Energia/fisiologia , Fluorescência , Giardia lamblia/genética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Desnaturação Proteica , Triose-Fosfato Isomerase/genética , Triose-Fosfato Isomerase/metabolismo , Triptofano/química
18.
Proteins ; 72(3): 972-9, 2008 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-18300228

RESUMO

Triosephosphate isomerase (TIM), whose structure is archetypal of dimeric (beta/alpha)(8) barrels, has a conserved salt bridge (Arg189-Asp225 in yeast TIM) that connects the two C-terminal beta/alpha segments to rest of the monomer. We constructed the mutant D225Q, and studied its catalysis and stability in comparison with those of the wild-type enzyme. Replacement of Asp225 by Gln caused minor drops in k(cat) and K(M), but the catalytic efficiency (k(cat)/K(M)) was practically unaffected. Temperature-induced unfolding-refolding of both TIM samples displayed hysteresis cycles, indicative of processes far from equilibrium. Kinetic studies showed that the rate constant for unfolding was about three-fold larger in the mutant than in wild-type TIM. However, more drastic changes were found in the kinetics of refolding: upon mutation, the rate-limiting step changed from a second-order (at submicromolar concentrations) to a first-order reaction. These results thus indicate that renaturation of yTIM occurs through a uni-bimolecular mechanism in which refolding of the monomer most likely begins at the C-terminal half of its polypeptide chain. From the temperature dependence of the refolding rate, we determined the change in heat capacity for the formation of the transition state from unfolded monomers. The value for the D225Q mutant, which is about 40% of the corresponding value for yTIM, would implicate the folding of only three quarters of a monomer chain in the transition state.


Assuntos
Dobramento de Proteína , Saccharomyces cerevisiae/enzimologia , Triose-Fosfato Isomerase/química , Triose-Fosfato Isomerase/metabolismo , Catálise , Dimerização , Ativação Enzimática , Meia-Vida , Cinética , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Estrutura Secundária de Proteína , Temperatura , Fatores de Tempo
19.
PLoS One ; 13(1): e0189525, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29342154

RESUMO

Proteins with great sequence similarity usually have similar structure, function and other physicochemical properties. But in many cases, one or more of the physicochemical or functional characteristics differ, sometimes very considerably, among these homologous proteins. To better understand how critical amino acids determine quantitative properties of function in proteins, the responsible residues must be located and identified. This can be difficult to achieve, particularly in cases where multiple amino acids are involved. In this work, two triosephosphate isomerases with very high similarity from two related human parasites were used to address one such problem. We demonstrate that a seventy-fold difference in the reactivity of an interface cysteine to the sulfhydryl reagent methylmethane sulfonate in these two enzymes depends on three amino acids located far away from this critical residue and which could not have been predicted using other current methods. Starting from previous observations with chimeric proteins involving these two triosephosphate isomerases, we developed a strategy involving additive mutant enzymes and selected site directed mutants to locate and identify the three amino acids. These three residues seem to induce changes in the interface cysteine in reactivity by increasing (or decreasing) its apparent pKa. Some enzymes with four to seven mutations also exhibited altered reactivity. This study completes a strategy for identifying key residues in the sequences of proteins that can have applications in future protein structure-function studies.


Assuntos
Aminoácidos/química , Cisteína/química , Reagentes de Sulfidrila/química , Triose-Fosfato Isomerase/química , Trypanosoma/enzimologia , Sequência de Aminoácidos , Aminoácidos/genética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Homologia de Sequência de Aminoácidos , Triose-Fosfato Isomerase/genética
20.
Vet Sci ; 5(3)2018 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-30142944

RESUMO

The cattle tick Rhipicephalus microplus is one of the most important ectoparasites causing significant economic losses for the cattle industry. The major tool of control is reducing the number of ticks, applying acaricides in cattle. However, overuse has led to selection of resistant populations of R. microplus to most of these products, some even to more than one active principle. Thus, exploration for new molecules with acaricidal activity in R. microplus has become necessary. Triosephosphate isomerase (TIM) is an essential enzyme in R. microplus metabolism and could be an interesting target for the development of new methods for tick control. In this work, we screened 227 compounds, from our in-house chemo-library, against TIM from R. microplus. Four compounds (50, 98, 14, and 161) selectively inhibited this enzyme with IC50 values between 25 and 50 µM. They were also able to diminish cellular viability of BME26 embryonic cells by more than 50% at 50 µM. A molecular docking study showed that the compounds bind in different regions of the protein; compound 14 interacts with the dimer interface. Furthermore, compound 14 affected the survival of partially engorged females, fed artificially, using the capillary technique. This molecule is simple, easy to produce, and important biological data-including toxicological information-are available for it. Our results imply a promising role for compound 14 as a prototype for development of a new acaricidal involving selective TIM inhibition.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA