Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(17)2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34502413

RESUMO

Type 2 Diabetes Mellitus (T2DM) is one of the most prevalent chronic metabolic disorders, and insulin has been placed at the epicentre of its pathophysiological basis. However, the involvement of impaired alpha (α) cell function has been recognized as playing an essential role in several diseases, since hyperglucagonemia has been evidenced in both Type 1 and T2DM. This phenomenon has been attributed to intra-islet defects, like modifications in pancreatic α cell mass or dysfunction in glucagon's secretion. Emerging evidence has shown that chronic hyperglycaemia provokes changes in the Langerhans' islets cytoarchitecture, including α cell hyperplasia, pancreatic beta (ß) cell dedifferentiation into glucagon-positive producing cells, and loss of paracrine and endocrine regulation due to ß cell mass loss. Other abnormalities like α cell insulin resistance, sensor machinery dysfunction, or paradoxical ATP-sensitive potassium channels (KATP) opening have also been linked to glucagon hypersecretion. Recent clinical trials in phases 1 or 2 have shown new molecules with glucagon-antagonist properties with considerable effectiveness and acceptable safety profiles. Glucagon-like peptide-1 (GLP-1) agonists and Dipeptidyl Peptidase-4 inhibitors (DPP-4 inhibitors) have been shown to decrease glucagon secretion in T2DM, and their possible therapeutic role in T1DM means they are attractive as an insulin-adjuvant therapy.


Assuntos
Comunicação Autócrina , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Células Secretoras de Glucagon/metabolismo , Células Secretoras de Insulina/metabolismo , Comunicação Parácrina , Animais , Diabetes Mellitus Tipo 1/tratamento farmacológico , Diabetes Mellitus Tipo 1/patologia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/patologia , Inibidores da Dipeptidil Peptidase IV/uso terapêutico , Glucagon/metabolismo , Peptídeo 1 Semelhante ao Glucagon/antagonistas & inibidores , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Células Secretoras de Glucagon/patologia , Humanos , Hipoglicemiantes/uso terapêutico , Células Secretoras de Insulina/patologia
2.
Front Endocrinol (Lausanne) ; 12: 735070, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34603210

RESUMO

Adipose tissue (AT) biology is linked to cardiovascular health since obesity is associated with cardiovascular disease (CVD) and positively correlated with excessive visceral fat accumulation. AT signaling to myocardial cells through soluble factors known as adipokines, cardiokines, branched-chain amino acids and small molecules like microRNAs, undoubtedly influence myocardial cells and AT function via the endocrine-paracrine mechanisms of action. Unfortunately, abnormal total and visceral adiposity can alter this harmonious signaling network, resulting in tissue hypoxia and monocyte/macrophage adipose infiltration occurring alongside expanded intra-abdominal and epicardial fat depots seen in the human obese phenotype. These processes promote an abnormal adipocyte proteomic reprogramming, whereby these cells become a source of abnormal signals, affecting vascular and myocardial tissues, leading to meta-inflammation, atrial fibrillation, coronary artery disease, heart hypertrophy, heart failure and myocardial infarction. This review first discusses the pathophysiology and consequences of adipose tissue expansion, particularly their association with meta-inflammation and microbiota dysbiosis. We also explore the precise mechanisms involved in metabolic reprogramming in AT that represent plausible causative factors for CVD. Finally, we clarify how lifestyle changes could promote improvement in myocardiocyte function in the context of changes in AT proteomics and a better gut microbiome profile to develop effective, non-pharmacologic approaches to CVD.


Assuntos
Tecido Adiposo/metabolismo , Miocárdio/metabolismo , Transdução de Sinais/fisiologia , Humanos , Inflamação/metabolismo , Miócitos Cardíacos/metabolismo
3.
Med Clin (Barc) ; 124(10): 371-3, 2005 Mar 19.
Artigo em Espanhol | MEDLINE | ID: mdl-15766507

RESUMO

BACKGROUND AND OBJECTIVE: Cardiovascular diseases are associated with the ischemia/reperfusion phenomena and therefore to the oxidation/antioxidation balance. The aim of this study was to determine malondialdehyde, nitric oxide, glutathione, ascorbic and dehydroascorbic acid in patients with chronic ischemic heart disease. PATIENTS AND METHOD: 32 male patients, with chronic ischemic heart disease, between 40 and 60 years of age were studied. These individuals were divided in two groups: 16 with hypertension and 16 without hypertension. Both groups were compared with 31 healthy male subjects (control group). RESULTS: Significant differences (p < 0.001) was observed in malondialdehyde between no-hypertension ischemic group: 5.3 (1.5) microM and the hypertension ischemic group: 4.8 (1.3) microM in contrast with the healthy group: 2.2 (0.5) microM. Hypertension ischemic group showed significant greater reduced glutation levels: 286.1 (31.4) microg/ml than control group 262.0 (38.8) microg/ml; p < 0.03 and no-hypertension ischemic group: 256.4 (41.5) microg/ml; p < 0.02. No significant difference in the rest of the parameters for all study groups. CONCLUSIONS: Oxidation/antioxidation balance during chronic ischemic heart disease can be considered as a good metabolic ischemia indicator, that used in the monitoring and therapeutic evaluation could detect molecular changes that anticipate installation of tissue damage.


Assuntos
Glutationa/metabolismo , Malondialdeído/metabolismo , Isquemia Miocárdica/metabolismo , Adulto , Doença Crônica , Eletrocardiografia , Glutationa/sangue , Humanos , Masculino , Malondialdeído/sangue , Pessoa de Meia-Idade , Isquemia Miocárdica/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA