Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Insect Mol Biol ; 30(1): 30-41, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33009687

RESUMO

Mosquitoes constitute the major living beings causing human deaths in the world. They are vectors of malaria, yellow fever, dengue, zika, filariases, chikungunya, among other diseases. New strategies to control/eradicate mosquito populations are based on newly developed genetic manipulation techniques. However, genetic transformation of mosquitoes is a major technical bottleneck due to low efficiency, the need of sophisticated equipment, and highly trained personnel. The present report shows the transgenerational genetic transformation of Aedes aegypti, using the particle inflow gun (PIG), by integrating the ecfp gene in the AAEL000582 mosquito gene with the CRISPR-Cas9 technique, achieving a mean efficiency of 44.5% of bombarded individuals (G0) that showed ECFP expression in their tissues, and a mean of 28.5% transformation efficiency measured on G1 individuals. The same transformation technique was used to integrate the egfp/scorpine genes cloned in the Minos transposon pMinHygeGFP into the Anopheles albimanus genome, achieving a mean efficiency of 43.25% of bombarded individuals (G0) that showed EGFP expression in their tissues. Once the technique was standardized, transformation of Ae. aegypti neonate larvae and An. albimanus eggs was achieved when exposed to gold microparticle bombardment. Integration of genes and heterologous protein expression were confirmed by PCR, sequencing, fluorescent microscopy, mass spectrometry, Western blot and dot blot analyses. Transgenerational inheritance of the transgenes was observed only on Ae. aegypti, as all transformed An. albimanus individuals died at the pupal stage of the G0 generation.


Assuntos
Biolística , Controle de Mosquitos/métodos , Mosquitos Vetores/genética , Transformação Genética , Aedes/genética , Animais , Anopheles/genética
2.
Fungal Genet Biol ; 101: 34-45, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28285895

RESUMO

Previously, we demonstrated that when Ustilago maydis (DC) Cda., a phytopathogenic basidiomycete and the causal agent of corn smut, is grown in the vicinity of maize embryogenic calli in a medium supplemented with the herbicide Dicamba, it developed gastroid-like basidiocarps. To elucidate the molecular mechanisms involved in the basidiocarp development by the fungus, we proceeded to analyze the transcriptome of the process, identifying a total of 2002 and 1064 differentially expressed genes at two developmental stages, young and mature basidiocarps, respectively. Function of these genes was analyzed with the use of different databases. MIPS analysis revealed that in the stage of young basidiocarp, among the ca. two thousand differentially expressed genes, there were some previously described for basidiocarp development in other fungal species. Additional elements that operated at this stage included, among others, genes encoding the transcription factors FOXO3, MIG3, PRO1, TEC1, copper and MFS transporters, and cytochromes P450. During mature basidiocarp development, important up-regulated genes included those encoding hydrophobins, laccases, and ferric reductase (FRE/NOX). The demonstration that a mapkk mutant was unable to form basidiocarps, indicated the importance of the MAPK signaling pathway in this developmental process.


Assuntos
Dicamba/farmacologia , Carpóforos/genética , Transcriptoma/efeitos dos fármacos , Ustilago/genética , Carpóforos/efeitos dos fármacos , Carpóforos/crescimento & desenvolvimento , Proteínas Fúngicas/biossíntese , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Doenças das Plantas/microbiologia , Ustilago/efeitos dos fármacos , Ustilago/crescimento & desenvolvimento , Ustilago/patogenicidade , Zea mays/microbiologia
3.
Science ; 276(5318): 1566-8, 1997 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-9171061

RESUMO

Aluminum when in soluble form, as found in acidic soils that comprise about 40 percent of the world's arable land, is toxic to many crops. Organic acid excretion has been correlated with aluminum tolerance in higher plants. Overproduction of citrate was shown to result in aluminum tolerance in transgenic tobacco (Nicotiana tabacum) and papaya (Carica papaya) plants.


Assuntos
Alumínio/toxicidade , Citratos/biossíntese , Plantas/efeitos dos fármacos , Citrato (si)-Sintase/genética , Citrato (si)-Sintase/metabolismo , Frutas/efeitos dos fármacos , Frutas/genética , Frutas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Plantas/genética , Plantas/metabolismo , Plantas Geneticamente Modificadas , Plantas Tóxicas , Pseudomonas aeruginosa/enzimologia , Pseudomonas aeruginosa/genética , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Nicotiana/efeitos dos fármacos , Nicotiana/genética , Nicotiana/metabolismo
4.
Plant Cell Rep ; 16(12): 847-852, 1997 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30727591

RESUMO

Mature embryos of Amaranthus hypochondriacus (amaranth) were used to develop an in vitro culture system for plant regeneration and genetic transformation. Plants were regenerated from embryo-derived callus cultivated on Murashige and Skoog medium supplemented with 10 µM 2,4-dichlorophenoxyacetic acid or 3,6-dichloro-2-methoxybenzoic acid and 10% coconut liquid endosperm. Transgenic plants were obtained by inoculation of mature embryo explants with a disarmed Agrobacterium strain containing the plasmid pGV2260(pEsc4), which carried the genes encoding neomycin phosphotransferase type II and ß-glucuronidase. The presence of transgenes in the genome of transformed amaranth plants and their progeny was demonstrated by Southern blot hybridization. Tissue specific and light-inducible expression directed by a pea chlorophyll a/b-binding protein promoter was observed in transgenic amaranth plants and their progeny.

5.
Plant Cell Rep ; 20(2): 131-136, 2001 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30759899

RESUMO

A finely dispersed, homogeneous and highly chlorophyllous cell suspension (TIANSJ98 cell line) was obtained from shoot apices of Bouteloua gracilis (H.B.K.) Lag. ex Steud. cultured on MPC medium containing MS salts supplemented with 2,4-D (1 mg/l), BAP (2 mg/l) and adenine (40 mg/l). When the TIANSJ98 cell line was grown in this medium with shaking at 180 rpm it had doubling times of 7.2 and 3.7 days in terms of fresh and dry weight, respectively. Total chlorophyll content in this cell culture ranged from 121.6 to 18.3 µg/g FW at 12 and 21 days following culture initiation. Plants regenerated from the TIANSJ98 cell line, via somatic embryogenesis, were grown to maturity and produced seeds. Although different cell culture systems have been described for cereals and grasses, to the best of our knowledge this is the first report of a highly chlorophyllous and regenerable cell suspension in Poaceae.

6.
Plant Cell Rep ; 15(1-2): 1-7, 1995 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24185643

RESUMO

A system for the production of transgenic papaya (Carica papaya L.) plants using zygotic embryos and embryogenic callus as target cells for particle bombardment is described. Phosphinothricin (bar ) and kanamycin (npt II) resistance genes were used as selectable markers, and the gus gene (uidA) as a reporter gene. Selection with 100 mg/l kanamycin and 4 mg/l phosphinothricin (PPT) yielded a total of over 90 resistant embryogenic colonies from three independent experiments using embryogenic callus as a target tissue. This represents an efficiency of 60 transgenic clones per gram of fresh weight callus bombarded. The efficiency of genetic transformation using zygotic embryos was lower, as only 8 independent resistant clones were recovered out of 645 bombarded zygotic embryos, giving a efficiency of 1.24%. Subsequent subculture of transgenic somatic embryos both from zygotic embryos and embryogenic callus led to the development of plants with apparently normal morphology. Histological, fluorimetric assay for GUS, NPT II assay and DNA analysis (Southern hybridization) showed that kanamycin /PPT resistant plants carried and expressed the transgenes.

7.
Mol Gen Genet ; 262(3): 468-72, 1999 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-10589834

RESUMO

The heterobasidiomycetes responsible for plant smuts obligatorily require their hosts for the completion of the sexual cycle. Accordingly, the sexual cycle of these fungi could so far be studied only by infecting host plants. We have now induced Ustilago maydis, the causative agent of corn smut, to traverse the whole life cycle by growing mixtures of mating-compatible strains of the fungus on a porous membrane placed on top of embryogenic cell cultures of its host Zea mays. Under these conditions, mating, karyogamy and meiosis take place, and the fungus induces differentiation of the plant cells. These results suggest that embryogenic maize cells produce diffusible compounds needed for completion of the sexual cycle of U. maydis, as the plant does for the pathogen during infection.


Assuntos
Recombinação Genética , Ustilago/genética , Cruzamentos Genéticos , Diploide , Haploidia , Reprodução , Ustilago/citologia , Zea mays/microbiologia
8.
Mol Gen Genet ; 258(1-2): 1-8, 1998 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-9613566

RESUMO

Asr is a family of genes that maps to chromosome 4 of tomato. Asr2, a recently reported member of this family, is believed to be regulated by abscisic acid (ABA), stress and ripening. A genomic Asr2 clone has been fully sequenced, and candidate upstream regulatory elements have been identified. To prove that the promoter region is functional in vivo, we fused it upstream of the beta-glucuronidase (GUS) reporter gene. The resulting chimeric gene fusion was used for transient expression assays in papaya embryogenic calli and leaves. In addition, the same construct was used to produce transgenic tomato, papaya, tobacco, and potato plants. Asr2 upstream sequences showed promoter function in all of these systems. Under the experimental conditions tested, ABA stimulated GUS expression in papaya and tobacco, but not in tomato and potato systems.


Assuntos
Ácido Abscísico/farmacologia , Regulação da Expressão Gênica , Proteínas de Plantas/genética , Solanum lycopersicum/genética , Glucuronidase/genética , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Proteínas Recombinantes de Fusão/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA