Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Breast Cancer Res ; 24(1): 40, 2022 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-35681213

RESUMO

BACKGROUND: The Bcl-3 protein is an atypical member of the inhibitor of -κB family that has dual roles as a transcriptional repressor and a coactivator for dimers of NF-κB p50 and p52. Bcl-3 is expressed in mammary adenocarcinomas and can promote tumorigenesis and survival signaling and has a key role in tumor metastasis. In this study, we have investigated the role of Bcl-3 in the normal mammary gland and impact on tumor pathology. METHODS: We utilized bcl-3-/- mice to study mammary gland structure in virgins and during gestation, lactation and early involution. Expression of involution-associated genes and proteins and putative Bcl-3 target genes was examined by qRT-PCR and immunoblot analysis. Cell autonomous branching morphogenesis and collagen I invasion properties of bcl-3-/- organoids were tested in 3D hydrogel cultures. The role of Bcl-3 in tumorigenesis and tumor pathology was also assessed using a stochastic carcinogen-induced mammary tumor model. RESULTS: Bcl-3-/- mammary glands demonstrated reduced branching complexity in virgin and pregnant mice. This defect was recapitulated in vitro where significant defects in bud formation were observed in bcl-3-/- mammary organoid cultures. Bcl-3-/- organoids showed a striking defect in protrusive collective fibrillary collagen I invasion associated with reduced expression of Fzd1 and Twist2. Virgin and pregnant bcl-3-/- glands showed increased apoptosis and rapid increases in lysosomal cell death and apoptosis after forced weaning compared to WT mice. Bcl-2 and Id3 are strongly induced in WT but not bcl-3-/- glands in early involution. Tumors in WT mice were predominately adenocarcinomas with NF-κB activation, while bcl-3-/- lesions were largely squamous lacking NF-κB and with low Bcl-2 expression. CONCLUSIONS: Collectively, our results demonstrate that Bcl-3 has a key function in mammary gland branching morphogenesis, in part by regulation of genes involved in extracellular matrix invasion. Markedly reduced levels of pro-survival proteins expression in bcl-3 null compared to WT glands 24 h post-weaning indicate that Bcl-3 has a role in moderating the rate of early phase involution. Lastly, a reduced incidence of bcl-3-/- mammary adenocarcinomas versus squamous lesions indicates that Bcl-3 supports the progression of epithelial but not metaplastic cancers.


Assuntos
Adenocarcinoma , Proteína 3 do Linfoma de Células B , Neoplasias da Mama , Carcinoma de Células Escamosas , Glândulas Mamárias Animais , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Animais , Apoptose/genética , Proteína 3 do Linfoma de Células B/metabolismo , Neoplasias da Mama/patologia , Carcinogênese/metabolismo , Carcinoma de Células Escamosas/patologia , Colágeno/metabolismo , Células Epiteliais/metabolismo , Feminino , Lactação , Glândulas Mamárias Animais/metabolismo , Camundongos , NF-kappa B/genética , NF-kappa B/metabolismo , Gravidez , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
2.
J Mammary Gland Biol Neoplasia ; 23(3): 109-123, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29876871

RESUMO

Cellular inhibitor of apoptosis proteins-1 and -2 (cIAP1/2) are integral to regulation of apoptosis and signaling by the tumor necrosis factor (TNF) and related family of receptors. The expression of cIAP2 in tissues is typically low and considered functionally redundant with cIAP1, however cIAP2 can be activated by a variety of cellular stresses. Members of the TNFR family and their ligands have essential roles in mammary gland biology. We have found that cIAP2-/- virgin mammary glands have reduced ductal branching and delayed lobuloalveogenesis in early pregnancy. Post-lactational involution involves two phases where the first phase is reversible and is mediated, in part, by TNFR family ligands. In cIAP2-/- mice mammary glands appeared engorged at mid-lactation accompanied by enhanced autophagic flux and decreased cIAP1 protein expression. Severely stretched myoepithelium was associated with BIM-EL expression and other indicators of anoikis. Within 24 h after forced or natural weaning, cIAP2-/- glands had nearly completed involution. The TNF-related weak inducer of apoptosis (Tweak) which results in degradation of cIAP1 through its receptor, Fn14, began to increase in late lactation and was significantly increased in cIAP2-/- relative to WT mice by 12 h post weaning accompanied by decreased cIAP1 protein expression. Carcinogen/progesterone-induced mammary tumorigenesis was significantly delayed in cIAP2-/- mice and tumors contained high numbers of apoptotic cells. We conclude that cIAP2 has a critical role in the mammary gland wherein it prevents rapid involution induced by milk stasis-induced stress associated with Tweak activation and contributes to the survival of mammary tumor cells.


Assuntos
Proteína 3 com Repetições IAP de Baculovírus/metabolismo , Carcinogênese/metabolismo , Lactação/metabolismo , Glândulas Mamárias Animais/metabolismo , Transdução de Sinais/fisiologia , Animais , Apoptose , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Gravidez , Desmame
3.
Proc Natl Acad Sci U S A ; 112(26): E3392-401, 2015 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-26056259

RESUMO

Target of Egr1 (TOE1) is a nuclear protein localized primarily in nucleoli and Cajal bodies that was identified as a downstream target of the immediate early gene Egr1. TOE1 displays a functional deadenylation domain and has been shown to participate in spliceosome assembly. We report here that TOE1 can function as an inhibitor of HIV-1 replication and show evidence that supports a direct interaction of TOE1 with the viral specific transactivator response element as part of the inhibitory mechanism. In addition, we show that TOE1 can be secreted by activated CD8(+) T lymphocytes and can be cleaved by the serine protease granzyme B, one of the main components of cytotoxic granules. Both full-length and cleaved TOE1 can spontaneously cross the plasma membrane and penetrate cells in culture, retaining HIV-1 inhibitory activity. Antiviral potency of TOE1 and its cell-penetrating capability have been identified to lie within a 35-amino-acid region containing the nuclear localization sequence.


Assuntos
HIV-1/fisiologia , Fusão de Membrana/fisiologia , Proteínas Nucleares/fisiologia , Replicação Viral/fisiologia , Células HEK293 , Repetição Terminal Longa de HIV/genética , HIV-1/genética , Células HeLa , Humanos , Proteínas Nucleares/metabolismo , Ligação Proteica , Proteólise , Ativação Transcricional
4.
Nucleic Acids Res ; 41(11): 5692-703, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23605047

RESUMO

The DNA damage-binding protein 2 (DDB2) is an adapter protein that can direct a modular Cul4-DDB1-RING E3 Ligase complex to sites of ultraviolet light-induced DNA damage to ubiquitinate substrates during nucleotide excision repair. The DDB2 transcript is ultraviolet-inducible; therefore, its regulation is likely important for its function. Curiously, the DDB2 mRNA is reportedly short-lived, but the transcript does not contain any previously characterized cis-acting determinants of mRNA stability in its 3' untranslated region (3'UTR). Here, we used a tetracycline regulated d2EGFP reporter construct containing specific 3'UTR sequences from DDB2 to identify novel cis-acting elements that regulate mRNA stability. Synthetic 3'UTRs corresponding to sequences as short as 25 nucleotides from the central region of the 3'UTR of DDB2 were sufficient to accelerate decay of the heterologous reporter mRNA. Conversely, these same 3'UTRs led to more rapid induction of the reporter mRNA, export of the message to the cytoplasm and the subsequent accumulation of the encoded reporter protein, indicating that this newly identified cis-acting element affects transcriptional and post-transciptional processes. These results provide clear evidence that nuclear and cytoplasmic processing of the DDB2 mRNA is inextricably linked.


Assuntos
Regiões 3' não Traduzidas , Proteínas de Ligação a DNA/genética , Processamento Pós-Transcricional do RNA , Estabilidade de RNA , RNA Mensageiro/metabolismo , Transcrição Gênica , Linhagem Celular , Proteínas de Ligação a DNA/análise , Proteínas de Fluorescência Verde/análise , Proteínas de Fluorescência Verde/genética , Humanos , Sequências Repetidas Invertidas , Proteínas Recombinantes de Fusão/análise , Sequências Reguladoras de Ácido Ribonucleico
5.
Mol Cancer Res ; 6(3): 468-82, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18337453

RESUMO

Sprouty (Spry) proteins modulate signal transduction pathways elicited by receptor tyrosine kinases (RTK). Depending on cell type and the particular RTK, Spry proteins exert dual functions: They can either repress RTK-mediated signaling pathways, mainly by interfering with the Ras/Raf/mitogen-activated protein kinase pathway or sustaining RTK signal transduction, for example by sequestering the E3 ubiquitin-ligase c-Cbl and thus preventing ubiquitylation, internalization, and degradation of RTKs. Here, by the inducible expression of murine Spry4 in pancreatic beta cells, we have assessed the functional role of Spry proteins in the development of pancreatic islets of Langerhans in normal mice and in the Rip1Tag2 transgenic mouse model of beta-cell carcinogenesis. beta cell-specific expression of mSpry4 provokes a significant reduction in islet size, an increased number of alpha cells per islet area, and impaired islet cell type segregation. Functional analysis of islet cell differentiation in cultured PANC-1 cells shows that mSpry4 represses adhesion and migration of differentiating pancreatic endocrine cells, most likely by affecting the subcellular localization of the protein tyrosine phosphatase PTP1B. In contrast, transgenic expression of mSpry4 during beta-cell carcinogenesis does not significantly affect tumor outgrowth and progression to tumor malignancy. Rather, tumor cells seem to escape mSpry4 transgene expression.


Assuntos
Células Secretoras de Insulina/fisiologia , Ilhotas Pancreáticas/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Neoplasias Pancreáticas/patologia , Animais , Linhagem Celular Tumoral , Primers do DNA , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Teste de Tolerância a Glucose , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Neoplasias Pancreáticas/genética , Reação em Cadeia da Polimerase , Proteínas de Ligação a RNA/genética , Receptores Proteína Tirosina Quinases/metabolismo , Transdução de Sinais
6.
Cells ; 8(10)2019 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-31635050

RESUMO

SRC-3/AIB1 (Amplified in Breast Cancer-1) is a nuclear receptor coactivator for the estrogen receptor in breast cancer cells. It is also an intrinsically disordered protein when not engaged with transcriptional binding partners and degraded upon transcriptional coactivation. Given the amplified expression of SRC-3 in breast cancers, the objective of this study was to determine how increasing SRC-3 protein levels are regulated in MCF-7 breast cancer cells. We found that endogenous SRC-3 was expelled from the nucleus in vesicle-like spheres under normal growth conditions suggesting that this form of nuclear exclusion of SRC-3 is a homeostatic mechanism for regulating nuclear SRC-3 protein. Only SRC-3 not associated with CREB-binding protein (CBP) was extruded from the nucleus. We found that overexpression in MCF-7 cells results in aneuploid senescence and cell death with frequent formation of nuclear aggregates which were consistently juxtaposed to perinuclear microtubules. Transfected SRC-3 was SUMOylated and caused redistribution of nuclear promyelocytic leukemia (PML) bodies and perturbation of the nuclear membrane lamin B1, hallmarks of nucleophagy. Increased SRC-3 protein-induced autophagy and resulted in SUMO-1 localization to the nuclear membrane and formation of protrusions variously containing SRC-3 and chromatin. Aspects of SRC-3 overexpression and toxicity were recapitulated following treatment with clinically relevant agents that stabilize SRC-3 in breast cancer cells. We conclude that amplified SRC-3 levels have major impacts on nuclear protein quality control pathways and may mark cancer cells for sensitivity to protein stabilizing therapeutics.


Assuntos
Proteína de Ligação a CREB/metabolismo , Coativador 3 de Receptor Nuclear/metabolismo , Apoptose/genética , Apoptose/fisiologia , Autofagia/genética , Autofagia/fisiologia , Proteína de Ligação a CREB/genética , Pontos de Checagem do Ciclo Celular/genética , Pontos de Checagem do Ciclo Celular/fisiologia , Núcleo Celular/genética , Núcleo Celular/metabolismo , Senescência Celular/efeitos dos fármacos , Senescência Celular/genética , Senescência Celular/fisiologia , Ciclina E/genética , Eletroforese em Gel de Poliacrilamida , Feminino , Humanos , Células MCF-7 , Microscopia de Fluorescência , Microtúbulos/metabolismo , Mitose/genética , Mitose/fisiologia , Mutagênese Sítio-Dirigida , Membrana Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Coativador 3 de Receptor Nuclear/genética , Fosforilação , Proteína da Leucemia Promielocítica/genética , Proteína da Leucemia Promielocítica/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteína SUMO-1/genética , Proteína SUMO-1/metabolismo , Tamoxifeno/farmacologia
7.
Cancer Prev Res (Phila) ; 11(2): 69-80, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29101208

RESUMO

Recent studies have shown that progesterone receptor (PR)-expressing cells respond to progesterone in part through the induction of the receptor activator of NF-κB ligand (RANKL), which acts in a paracrine manner to induce expansion of a RANK-expressing luminal progenitor cell population. The RANK+ population in human breast tissue from carriers of BRCA1 mutations (BRCA1mut/+) as well as the luminal progenitor population in Brca1-deficient mouse mammary glands is abnormally amplified. Remarkably, mouse Brca1+/- and human BRCA1mut/+ progenitor cells are able to form colonies in vitro in the absence of progesterone, demonstrating a hormone-independent proliferative capacity. Our research has demonstrated that proliferation in BRCA1-deficient cells results in a DNA damage response (DDR) that activates a persistent NF-κB signal, which supplants progesterone/RANKL signaling for an extended time period. Thus, the transcriptional targets normally activated by RANKL that promote a proliferative response in luminal progenitors can contribute to the susceptibility of mammary epithelial cells to BRCA1-mutated breast cancers as a consequence of DDR-induced NF-κB. Together, these latest findings mark substantial progress in uncovering the mechanisms driving high rates of breast tumorigenesis in BRCA1 mutation carriers and ultimately reveal possibilities for nonsurgical prevention strategies. Cancer Prev Res; 11(2); 69-80. ©2017 AACR.


Assuntos
Proteína BRCA1/genética , Neoplasias da Mama/patologia , Mama/patologia , Transformação Celular Neoplásica/patologia , Mutação , NF-kappa B/metabolismo , Mama/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Feminino , Humanos , Transdução de Sinais
8.
Gene ; 608: 86-94, 2017 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-28119089

RESUMO

The p53 tumour suppressor is a transcription factor that can increase the expression of mRNAs and microRNAs (miRNAs). HT29-tsp53 cells expressing a temperature sensitive variant of p53 have provided a useful model to rapidly and reversibly control p53 activity. In this model, the majority of p53-responsive mRNAs were upregulated rapidly but they were short-lived leading to rapid decay of the p53 response at the restrictive temperature. Here we used oligonucleotide microarrays and reverse transcriptase PCR to show that p53-induced miRNAs exhibited a distinct temporal pattern of expression. Whereas p53-induced miRNAs like miR-143-3p, miR-145-5p, miR-34a-5p and miR-139-5p increased as fast as mRNAs, they were extremely stable persisting long after p53 induced mRNAs and even their corresponding primary miRNAs had decayed to baseline levels. Three p53-induced mRNAs (MDM2, BTG2 and CDKN1A) are experimentally verified targets of one or more of these specific miRNAs so we hypothesized that the sustained expression of p53-induced miRNAs could be explained by a post-transcriptional feedback loop. Activation of consecutive p53 responses separated by a period of recovery led to the selective attenuation of a subset of p53 regulated mRNAs corresponding to those targeted by one or more of the p53-responsive miRNAs. Our results indicate that the long term expression of p53 responsive miRNAs leads to an excess of miRNAs during the second response and this likely prevents the induction of MDM2, BTG2 and CDKN1A mRNA and/or protein. These observations are likely to have important implications for daily cancer therapies that activate p53 in normal tissues and/or tumour cells.


Assuntos
MicroRNAs/genética , Estabilidade de RNA , RNA Mensageiro/genética , Proteína Supressora de Tumor p53/fisiologia , Linhagem Celular Tumoral , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Células HT29 , Humanos , MicroRNAs/fisiologia , Análise em Microsséries , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , RNA Mensageiro/metabolismo , Ativação Transcricional/genética , Proteína Supressora de Tumor p53/metabolismo
9.
Cell Stem Cell ; 19(1): 52-65, 2016 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-27292187

RESUMO

Human BRCA1 mutation carriers and BRCA1-deficient mouse mammary glands contain an abnormal population of mammary luminal progenitors that can form 3D colonies in a hormone-independent manner. The intrinsic cellular regulatory defect in these presumptive breast cancer precursors is not known. We have discovered that nuclear factor kappaB (NF-κB) (p52/RelB) is persistently activated in a subset of BRCA1-deficient mammary luminal progenitors. Hormone-independent luminal progenitor colony formation required NF-κB, ataxia telangiectasia-mutated (ATM), and the inhibitor of kappaB kinase, IKKα. Progesterone (P4)-stimulated proliferation resulted in a marked enhancement of DNA damage foci in Brca1(-/-) mouse mammary. In vivo, NF-κB inhibition prevented recovery of Brca1(-/-) hormone-independent colony-forming cells. The majority of human BRCA1(mut/+) mammary glands showed marked lobular expression of nuclear NF-κB. We conclude that the aberrant proliferative capacity of Brca1(-/-) luminal progenitor cells is linked to the replication-associated DNA damage response, where proliferation of mammary progenitors is perpetuated by damage-induced, autologous NF-κB signaling.


Assuntos
Proteína BRCA1/deficiência , Mama/patologia , Dano ao DNA , Glândulas Mamárias Animais/patologia , NF-kappa B/metabolismo , Células-Tronco/patologia , Animais , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteína BRCA1/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Técnicas de Silenciamento de Genes , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Subunidade p52 de NF-kappa B/metabolismo , Fosforilação/efeitos dos fármacos , Fosfosserina/metabolismo , Progesterona/farmacologia , Ligação Proteica/efeitos dos fármacos , Sesquiterpenos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Ensaio Tumoral de Célula-Tronco
10.
PLoS One ; 11(2): e0148529, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26840126

RESUMO

The p53 tumour suppressor is a transcription factor that can regulate the expression of numerous genes including many encoding proteins and microRNAs (miRNAs). The predominant outcomes of a typical p53 response are the initiation of apoptotic cascades and the activation of cell cycle checkpoints. HT29-tsp53 cells express a temperature sensitive variant of p53 and in the absence of exogenous DNA damage, these cells preferentially undergo G1 phase cell cycle arrest at the permissive temperature that correlates with increased expression of the cyclin-dependent kinase inhibitor p21WAF1. Recent evidence also suggests that a variety of miRNAs can induce G1 arrest by inhibiting the expression of proteins like CDK4 and CDK6. Here we used oligonucleotide microarrays to identify p53-regulated miRNAs that are induced in these cells undergoing G1 arrest. At the permissive temperature, the expression of several miRNAs was increased through a combination of either transcriptional or post-transcriptional regulation. In particular, miR-34a-5p, miR-143-3p and miR-145-5p were strongly induced and they reached levels comparable to that of reference miRNAs (miR-191 and miR-103). Importantly, miR-34a-5p and miR-145-5p are known to silence the Cdk4 and/or Cdk6 G1 cyclin-dependent kinases (cdks). Surprisingly, there was no p53-dependent decrease in the expression of either of these G1 cdks. To search for other potential targets of p53-regulated miRNAs, p53-downregulated mRNAs were identified through parallel microarray analysis of mRNA expression. Once again, there was no clear effect of p53 on the repression of mRNAs under these conditions despite a remarkable increase in p53-induced mRNA expression. Therefore, despite a strong p53 transcriptional response, there was no clear evidence that p53-responsive miRNA contributed to gene silencing. Taken together, the changes in cell cycle distribution in this cell line at the permissive temperature is likely attributable to transcriptional upregulation of the CDKN1A mRNA and p21WAF1 protein and not to the down regulation of CDK4 or CDK6 by p53-regulated miRNAs.


Assuntos
Pontos de Checagem da Fase G1 do Ciclo Celular , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , MicroRNAs/biossíntese , RNA Neoplásico/biossíntese , Proteína Supressora de Tumor p53/metabolismo , Linhagem Celular Tumoral , Quinase 4 Dependente de Ciclina/genética , Quinase 4 Dependente de Ciclina/metabolismo , Quinase 6 Dependente de Ciclina/genética , Quinase 6 Dependente de Ciclina/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Humanos , MicroRNAs/genética , RNA Neoplásico/genética , Proteína Supressora de Tumor p53/genética
11.
Thromb Haemost ; 90(4): 586-90, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-14515177

RESUMO

Among many signaling pathways, receptor tyrosine kinases (RTKs) can activate the mitogen-activated protein kinase (MAPK) signaling pathway that subsequently leads to a variety of cellular changes, including proliferation, differentiation and motility. The regulation of growth factor signaling is complex, and various cell types respond differently to the same stimulus for reasons not entirely understood. The recent discovery in Drosophila of Sprouty (dSpry), an inhibitor of RTK-induced MAPK activation, provides clues to how these signals are regulated. In mammals, four orthologues of dSpry, Spry1-4, have been described, and in this review we discuss their functional characteristics. Mammalian Sprys, like dSpry, are ligand-induced feedback inhibitors of a number of growth factor receptors. In endothelial cells, upon fibroblast growth factor (FGF) receptor and vascular endothelial growth factor (VEGF) receptor activation, Sprys translocate to the plasma membrane and inhibit cell growth and proliferation. However, in epidermal growth factor (EGF)-stimulated cells, Sprys can enhance MAPK activation. In addition, Sprys have many binding partners, including different effectors of the MAPK activation pathway. The intersection point where Sprys interfere in the MAPK pathway as well as their interactions with other proteins may partly explain the dual, yet opposing roles, on growth factor-induced MAPK activation. Moreover, Sprys require tyrosine phosphorylation to interact with their binding partners, a prerequisite for their dual function. Hence, Sprys add another layer of complexity to the regulation of RTK-mediated signal transduction that begins to explain the variation in cellular responses to growth factors.


Assuntos
Endotélio Vascular/fisiologia , Sistema de Sinalização das MAP Quinases , Fosfoproteínas/fisiologia , Animais , Endotélio Vascular/citologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Membrana/metabolismo , Proteínas de Membrana/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/fisiologia , Fosfoproteínas/metabolismo , Proteínas/metabolismo , Proteínas/fisiologia , Receptores de Fatores de Crescimento/antagonistas & inibidores
12.
Mol Cancer Ther ; 13(7): 1882-93, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24785256

RESUMO

Acquired resistance to selective estrogen receptor (ER) modulators (SERM) and downregulators (SERD) is a significant clinical problem in the treatment of estrogen (E2) receptor-positive (ER(+)) breast cancers. There are two ER subtypes, ERα and ERß, which promote and inhibit breast cancer cell proliferation, respectively. Although ER(+) breast cancers typically express a high ratio of ERα to ERß, the acquisition of SERM resistance in vitro and in vivo is associated with increased relative expression of the ERß. On some gene enhancers, ERß has been shown to function in opposition to the ERα in the presence of E2. Here, we demonstrate that two different ERß agonists, WAY-20070 and a novel "A-CD" estrogen called L17, produce a marked reduction in G(2)-M phase correlated with effects on cyclin D1 and cyclin E expression in a SERM/SERD-resistant breast cancer cell line. ERß agonists recruited both the ERα and ERß to the Bcl-2 E2-response element strongly reducing Bcl-2 mRNA and protein in an ERß-dependent manner. L17 recruited RIP140 to the Bcl-2 promoter in cells overexpressing ERß. Exposure to the ERß ligands also resulted in increased processing of LC3-I to LC3-II, indicative of enhanced autophagic flux. The coaddition of ERß agonist and the autophagy inhibitor chloroquine resulted in a significant accumulation of sub-G1 DNA which was completely prevented by the addition of the caspase inhibitor Z-VAD-FMK. We propose that combined therapies with an ERß agonist and an inhibitor of autophagy may provide the basis for a novel approach to the treatment of SERM/SERD-resistant breast cancers.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Receptor beta de Estrogênio/agonistas , Estrogênios/farmacologia , Oxazóis/farmacologia , Fenóis/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/biossíntese , Autofagia/efeitos dos fármacos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células , Receptor beta de Estrogênio/genética , Receptor beta de Estrogênio/metabolismo , Feminino , Humanos , Ligantes , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Transdução de Sinais/efeitos dos fármacos
13.
Mech Ageing Dev ; 134(5-6): 243-52, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23542592

RESUMO

Bulky DNA adducts induced by agents like ultraviolet light, cisplatin and oxidative metabolism pose a block to elongation by RNA polymerase II (RNAPII). The arrested RNAPII can initiate the repair of transcription-blocking DNA lesions by transcription-coupled nucleotide excision repair (TC-NER) to permit efficient recovery of mRNA synthesis while widespread sustained transcription blocks lead to apoptosis. Therefore, RNAPII serves as a processive DNA damage sensor that identifies transcription-blocking DNA lesions. Cockayne syndrome (CS) is an autosomal recessive disorder characterized by a complex phenotype that includes clinical photosensitivity, progressive neurological degeneration and premature-aging. CS is associated with defects in TC-NER and the recovery of mRNA synthesis, making CS cells exquisitely sensitive to a variety of DNA damaging agents. These defects in the coupling of repair and transcription appear to underlie some of the complex clinical features of CS. Recent insight into the consequences of blocked transcription and their relationship to CS will be discussed.


Assuntos
Síndrome de Cockayne/metabolismo , Adutos de DNA/metabolismo , Reparo do DNA , RNA Polimerase II/metabolismo , RNA Mensageiro/biossíntese , Transcrição Gênica , Animais , Antineoplásicos/efeitos adversos , Antineoplásicos/farmacologia , Cisplatino/efeitos adversos , Cisplatino/farmacologia , Síndrome de Cockayne/genética , Síndrome de Cockayne/patologia , Adutos de DNA/genética , Humanos , Oxirredução/efeitos dos fármacos , Oxirredução/efeitos da radiação , RNA Polimerase II/genética , RNA Mensageiro/genética , Raios Ultravioleta/efeitos adversos
14.
PLoS One ; 8(8): e70515, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23950948

RESUMO

A significant role for micro (mi)RNA in the regulation of gene expression in tumours has been recently established. In order to further understand how miRNA expression may contribute to prostate tumour growth and progression, we evaluated expression of miRNA in two invasive prostate tumour lines, PC3 and DU145, and compared it to that in normal prostate epithelial cells. Although a number of miRNAs were differentially expressed, we focused our analysis on miR-105, a novel miRNA not previously linked to prostate cancer. miR-105 levels were significantly decreased in both tumour cell lines in comparison to normal prostate epithelial cells. To determine its potential role in prostate cancer pathogenesis, we overexpressed miR-105 in both PC3 and DU145 cells and determined its effect on various tumourigenic properties. miR-105 overexpression inhibited tumour cell proliferation, tumour growth in anchorage-independent three-dimensional conditions and tumour invasion in vitro, properties of highly aggressive tumour cells. Of potential clinical significance, miR-105 overexpression inhibited tumour growth in vivo in xenograft models using these cell lines. We further identified CDK6 as a putative target of miR-105 which is likely a main contributor to the inhibition of tumour cell growth observed in our assays. Our results suggest that miR-105 inhibits tumour cell proliferation and hence may represent a novel therapeutically relevant cellular target to inhibit tumour growth or a marker of aggressive tumours in prostate cancer patients.


Assuntos
Proliferação de Células , Quinase 6 Dependente de Ciclina/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Neoplasias da Próstata/genética , Carga Tumoral/genética , Regiões 3' não Traduzidas/genética , Animais , Apoptose/genética , Western Blotting , Linhagem Celular , Linhagem Celular Tumoral , Movimento Celular/genética , Sobrevivência Celular/genética , Quinase 6 Dependente de Ciclina/metabolismo , Humanos , Masculino , Camundongos , Camundongos Nus , Invasividade Neoplásica , Análise de Sequência com Séries de Oligonucleotídeos , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transcriptoma , Transplante Heterólogo
15.
PLoS One ; 8(2): e57426, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23437386

RESUMO

The cold inducible RNA binding protein (CIRBP) responds to a wide array of cellular stresses, including short wavelength ultraviolet light (UVC), at the transcriptional and post-translational level. CIRBP can bind the 3'untranslated region of specific transcripts to stabilize them and facilitate their transport to ribosomes for translation. Here we used RNA interference and oligonucleotide microarrays to identify potential downstream targets of CIRBP induced in response to UVC. Twenty eight transcripts were statistically increased in response to UVC and these exhibited a typical UVC response. Only 5 of the 28 UVC-induced transcripts exhibited a CIRBP-dependent pattern of expression. Surprisingly, 3 of the 5 transcripts (IL1B, IL8 and TNFAIP6) encoded proteins important in inflammation with IL-1ß apparently contributing to IL8 and TNFAIP6 expression in an autocrine fashion. UVC-induced IL1B expression could be inhibited by pharmacological inhibition of NFκB suggesting that CIRBP was affecting NF-κB signaling as opposed to IL1B mRNA stability directly. Bacterial lipopolysaccharide (LPS) was used as an activator of NF-κB to further study the potential link between CIRBP and NFκB. Transfection of siRNAs against CIRBP reduced the extent of the LPS-induced phosphorylation of IκBα, NF-κB DNA binding activity and IL-1ß expression. The present work firmly establishes a novel link between CIRBP and NF-κB signaling in response to agents with diverse modes of action. These results have potential implications for disease states associated with inflammation.


Assuntos
Interleucina-1beta/genética , NF-kappa B/genética , RNA Mensageiro/biossíntese , Proteínas de Ligação a RNA/genética , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/imunologia , Temperatura Baixa , Fibroblastos , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos da radiação , Humanos , Proteínas I-kappa B/genética , Proteínas I-kappa B/imunologia , Interleucina-1beta/imunologia , Interleucina-8/genética , Interleucina-8/imunologia , Lipopolissacarídeos/farmacologia , Inibidor de NF-kappaB alfa , NF-kappa B/imunologia , Análise de Sequência com Séries de Oligonucleotídeos , Fosforilação/efeitos dos fármacos , Fosforilação/efeitos da radiação , Cultura Primária de Células , Regiões Promotoras Genéticas , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Proteínas de Ligação a RNA/antagonistas & inibidores , Proteínas de Ligação a RNA/imunologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/efeitos da radiação , Raios Ultravioleta
16.
Mol Oncol ; 5(6): 517-26, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22075057

RESUMO

Focal adhesion kinase (FAK), a cytoplasmic tyrosine kinase and scaffold protein localized to focal adhesions, is uniquely positioned at the convergence point of integrin and receptor tyrosine kinase signal transduction pathways. FAK is overexpressed in many tumor cells, hence various inhibitors targeting its activity have been tested for anti-tumor activity. However, the direct effects of these pharmacologic agents on the endothelial cells of the vasculature have not been examined. Using primary human umbilical vein endothelial cells (HUVEC), we characterized the effects of two FAK inhibitors, PF-573,228 and FAK Inhibitor 14 on essential processes for angiogenesis, such as migration, proliferation, viability and endothelial cell tube formation. We observed that treatment with either FAK Inhibitor 14 or PF-573,228 resulted in reduced HUVEC viability, migration and tube formation in response to vascular endothelial growth factor (VEGF). Furthermore, we found that PF-573,228 had the added ability to induce apoptosis of endothelial cells within 36 h post-drug administration even in the continued presence of VEGF stimulation. FAK inhibitors also resulted in modification of the actin cytoskeleton within HUVEC, with observed increased stress fiber formation in the presence of drug. Given that endothelial cells were sensitive to FAK inhibitors at concentrations well below those reported to inhibit tumor cell migration, we confirmed their ability to inhibit endothelial-derived FAK autophosphorylation and FAK-mediated phosphorylation of recombinant paxillin at these doses. Taken together, our data indicate that small molecule inhibitors of FAK are potent anti-angiogenic agents and suggest their utility in combinatorial therapeutic approaches targeting tumor angiogenesis.


Assuntos
Inibidores da Angiogênese/farmacologia , Proteína-Tirosina Quinases de Adesão Focal/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Quinolonas/farmacologia , Sulfonas/farmacologia , Apoptose/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Fosforilação/efeitos dos fármacos
17.
Angiogenesis ; 11(1): 53-62, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18219583

RESUMO

Angiogenesis relies on endothelial cells properly processing signals from growth factors provided in both an autocrine and a paracrine manner. These mitogens bind to their cognate receptor tyrosine kinases (RTKs) on the cell surface, thereby activating a myriad of complex intracellular signaling pathways whose outputs include cell growth, migration, and morphogenesis. Understanding how these cascades are precisely controlled will provide insight into physiological and pathological angiogenesis. The Sprouty (Spry) family of proteins is a highly conserved group of negative feedback loop modulators of growth factor-mediated mitogen-activated protein kinase (MAPK) activation originally described in Drosophila. There are four mammalian orthologs (Spry1-4) whose modulation of RTK-induced signaling pathways is growth factor- and cell context-dependent. Endothelial cells are a group of highly differentiated cell types necessary for defining the mammalian vasculature. These cells respond to a plethora of growth factors and express all four Spry isoforms, thus highlighting the complexity that is required to form and maintain vessels in mammals. This review describes Spry functions in the context of endothelial biology and angiogenesis, and provides an update on Spry-interacting proteins and Spry mechanisms of action.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Proteínas de Membrana/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Fosfoproteínas/fisiologia , Receptores Proteína Tirosina Quinases/fisiologia , Transdução de Sinais/fisiologia , Proteínas Adaptadoras de Transdução de Sinal , Animais , Fatores de Crescimento de Fibroblastos/antagonistas & inibidores , Fatores de Crescimento de Fibroblastos/metabolismo , Fatores de Crescimento de Fibroblastos/fisiologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinases
18.
J Biol Chem ; 281(39): 29201-12, 2006 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-16877379

RESUMO

Growth factor-mediated signal transduction cascades can be regulated spatio-temporally by signaling modulators, such as Sprouty proteins. The four mammalian Sprouty family members are palmitoylated phosphoproteins that can attenuate or potentiate numerous growth factor-induced signaling pathways. Previously, we have shown that Sprouty-1 and Sprouty-2 associate with Caveolin-1, the major structural protein of caveolae. Like Sprouty, Caveolin-1 inhibits growth factor-induced mitogen-activated protein kinase activation. Here, we demonstrate that all four mammalian Sprouty family members physically interact with Caveolin-1. The C terminus of Caveolin-1 is the major Sprouty-binding site, whereas Sprouty binds Caveolin-1 via its conserved C-terminal domain. A single point mutation in this domain results in loss of Caveolin-1 interaction. Moreover, we demonstrate that the various Sprouty isoforms differ dramatically in their cooperation with Caveolin-1-mediated inhibition of mitogen-activated protein kinase activation and that such cooperation is also highly dependent on the type of growth factor investigated and on cell density. Together, the data suggest that the Sprouty/Caveolin-1 interaction modulates signaling in a growth factor- and Sprouty isoform-specific manner.


Assuntos
Caveolina 1/fisiologia , Proteínas de Membrana/fisiologia , Fosfoproteínas/fisiologia , Animais , Células COS , Caveolina 1/metabolismo , Chlorocebus aethiops , Clonagem Molecular , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Humanos , Proteínas de Membrana/química , Camundongos , Isoformas de Proteínas , Estrutura Terciária de Proteína , Transdução de Sinais
19.
Biochem Cell Biol ; 80(5): 623-38, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12440702

RESUMO

The molecular cloning of cDNAs encoding nucleoside transporter proteins has greatly advanced understanding of how nucleoside permeants are translocated across cell membranes. The nucleoside transporter proteins identified thus far have been categorized into five distinct superfamilies. Two of these superfamilies, the equilibrative and concentrative nucleoside transporters, have human members and these will be examined in depth in this review. The human equilibrative nucleoside transporters translocate nucleosides and nucleobases bidirectionally down their concentration gradients and are important in the uptake of anticancer and antiviral nucleoside drugs. The human concentrative nucleoside transporters cotranslocate nucleosides and sodium unidirectionally against the nucleoside concentration gradients and play a vital role in certain tissues. The regulation of nucleoside and nucleobase transporters is being studied more intensely now that more tools are available. This review provides an overview of recent advances in the molecular biology and regulation of the nucleoside and nucleobase transporters.


Assuntos
Células Eucarióticas/fisiologia , Proteínas de Transporte de Nucleosídeos/fisiologia , Nucleosídeos/metabolismo , Células Procarióticas/fisiologia , Animais , Antineoplásicos/metabolismo , Antivirais/metabolismo , Transporte Biológico , Membrana Celular/metabolismo , Humanos , Membranas Intracelulares/metabolismo , Biologia Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA