Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 161
Filtrar
1.
Mol Ecol ; 33(3): e17230, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38078558

RESUMO

Urbanization is a persistent and widespread driver of global environmental change, potentially shaping evolutionary processes due to genetic drift and reduced gene flow in cities induced by habitat fragmentation and small population sizes. We tested this prediction for the eastern grey squirrel (Sciurus carolinensis), a common and conspicuous forest-dwelling rodent, by obtaining 44K SNPs using reduced representation sequencing (ddRAD) for 403 individuals sampled across the species' native range in eastern North America. We observed moderate levels of genetic diversity, low levels of inbreeding, and only a modest signal of isolation-by-distance. Clustering and migration analyses show that estimated levels of migration and genetic connectivity were higher than expected across cities and forested areas, specifically within the eastern portion of the species' range dominated by urbanization, and genetic connectivity was less than expected within the western range where the landscape is fragmented by agriculture. Landscape genetic methods revealed greater gene flow among individual squirrels in forested regions, which likely provide abundant food and shelter for squirrels. Although gene flow appears to be higher in areas with more tree cover, only slight discontinuities in gene flow suggest eastern grey squirrels have maintained connected populations across urban areas in all but the most heavily fragmented agricultural landscapes. Our results suggest urbanization shapes biological evolution in wildlife species depending strongly on the composition and habitability of the landscape matrix surrounding urban areas.


Assuntos
Animais Selvagens , Metagenômica , Animais , Humanos , População Urbana , Ecossistema , Sciuridae/genética
2.
Proc Natl Acad Sci U S A ; 118(9)2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33619083

RESUMO

Mapping landscape connectivity is important for controlling invasive species and disease vectors. Current landscape genetics methods are often constrained by the subjectivity of creating resistance surfaces and the difficulty of working with interacting and correlated environmental variables. To overcome these constraints, we combine the advantages of a machine-learning framework and an iterative optimization process to develop a method for integrating genetic and environmental (e.g., climate, land cover, human infrastructure) data. We validate and demonstrate this method for the Aedes aegypti mosquito, an invasive species and the primary vector of dengue, yellow fever, chikungunya, and Zika. We test two contrasting metrics to approximate genetic distance and find Cavalli-Sforza-Edwards distance (CSE) performs better than linearized FST The correlation (R) between the model's predicted genetic distance and actual distance is 0.83. We produce a map of genetic connectivity for Ae. aegypti's range in North America and discuss which environmental and anthropogenic variables are most important for predicting gene flow, especially in the context of vector control.


Assuntos
Aedes/genética , Meio Ambiente , Interação Gene-Ambiente , Aprendizado de Máquina , Animais , Variação Genética , Genética Populacional , Humanos , Modelos Biológicos , Mosquitos Vetores/genética , Fluxo de Trabalho
3.
Mol Ecol ; 31(24): 6617-6633, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35034394

RESUMO

Hybridization plays an important and underappreciated role in shaping the evolutionary trajectories of species. Following the introduction of a non-native organism to a novel habitat, hybridization with a native congener may affect the probability of establishment of the introduced species. In most documented cases of hybridization between a native and a non-native species, a mosaic hybrid zone is formed, with hybridization occurring heterogeneously across the landscape. In contrast, most naturally occurring hybrid zones are clinal in structure. Here, we report on a long-term microsatellite data set that monitored hybridization between the invasive winter moth, Operophtera brumata (Lepidoptera: Geometridae), and the native Bruce spanworm, O. bruceata, over a 12-year period. Our results document one of the first examples of the real-time formation and geographic settling of a clinal hybrid zone. In addition, by comparing one transect in Massachusetts where extreme winter cold temperatures have been hypothesized to restrict the distribution of winter moth, and one in coastal Connecticut, where winter temperatures are moderated by Long Island Sound, we found that the location of the hybrid zone appeared to be independent of environmental variables and maintained under a tension model wherein the stability of the hybrid zone was constrained by population density, reduced hybrid fitness, and low dispersal rates. Documenting the formation of a contemporary clinal hybrid zone may provide important insights into the factors that shaped other well-established hybrid zones.


Assuntos
Mariposas , Animais , Mariposas/genética , Repetições de Microssatélites/genética , Hibridização Genética , Estações do Ano , Espécies Introduzidas
4.
Heredity (Edinb) ; 128(4): 261-270, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35217806

RESUMO

The Galapagos Archipelago is recognized as a natural laboratory for studying evolutionary processes. San Cristóbal was one of the first islands colonized by tortoises, which radiated from there across the archipelago to inhabit 10 islands. Here, we sequenced the mitochondrial control region from six historical giant tortoises from San Cristóbal (five long deceased individuals found in a cave and one found alive during an expedition in 1906) and discovered that the five from the cave are from a clade that is distinct among known Galapagos giant tortoises but closely related to the species from Española and Pinta Islands. The haplotype of the individual collected alive in 1906 is in the same clade as the haplotype in the contemporary population. To search for traces of a second lineage in the contemporary population on San Cristóbal, we closely examined the population by sequencing the mitochondrial control region for 129 individuals and genotyping 70 of these for both 21 microsatellite loci and >12,000 genome-wide single nucleotide polymorphisms [SNPs]. Only a single mitochondrial haplotype was found, with no evidence to suggest substructure based on the nuclear markers. Given the geographic and temporal proximity of the two deeply divergent mitochondrial lineages in the historical samples, they were likely sympatric, raising the possibility that the lineages coexisted. Without the museum samples, this important discovery of an additional lineage of Galapagos giant tortoise would not have been possible, underscoring the value of such collections and providing insights into the early evolution of this iconic radiation.


Assuntos
Tartarugas , Animais , DNA Mitocondrial/genética , Equador , Genoma , Haplótipos , Humanos , Repetições de Microssatélites , Museus , Filogenia , Tartarugas/genética
5.
Mol Ecol ; 30(14): 3439-3452, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34033202

RESUMO

Reconstructing the geographic origins of non-native species is important for studying the factors that influence invasion success, however; these analyses can be constrained by the amount of diversity present in the native and invaded regions, and by changes in the genetic background of the invading population following bottlenecks and/or hybridization events. Here we explore the geographical origins of the invasive winter moth (Operopthera brumata L.) that has caused widespread defoliation to forests, orchards, and crops in Nova Scotia, British Columbia, Oregon, and the northeastern United States. It is not known whether these represent independent introductions to North America, or a "stepping stone" spread among regions. Using a combination of Bayesian assignment and approximate Bayesian computation methods, we analysed a population genetic data set of 24 microsatellite loci. We estimate that winter moth was introduced to North America on at least four occasions, with the Nova Scotian and British Columbian populations probably being introduced from France and Sweden, respectively; the Oregonian population probably being introduced from either the British Isles or northern Fennoscandia; and the population in the northeastern United States probably being introduced from somewhere in Central Europe. We discuss the impact of genetic bottlenecks on analyses meant to determine region of origin.


Assuntos
Mariposas , Animais , Teorema de Bayes , Colúmbia Britânica , Europa (Continente) , França , Variação Genética , Genética Populacional , Espécies Introduzidas , Repetições de Microssatélites , Mariposas/genética , New England , América do Norte , Oregon , Suécia
6.
Mol Ecol ; 30(23): 6325-6339, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34510620

RESUMO

Whole genome sequencing provides deep insights into the evolutionary history of a species, including patterns of diversity, signals of selection, and historical demography. When applied to closely related taxa with a wealth of background knowledge, population genomics provides a comparative context for interpreting population genetic summary statistics and comparing empirical results with the expectations of population genetic theory. The Galapagos giant tortoises (Chelonoidis spp.), an iconic rapid and recent radiation, offer such an opportunity. Here, we sequenced whole genomes from three individuals of the 12 extant lineages of Galapagos giant tortoise and estimate diversity measures and reconstruct changes in coalescent rate over time. We also compare the number of derived alleles in each lineage to infer how synonymous and nonsynonymous mutation accumulation rates correlate with population size and life history traits. Remarkably, we find that patterns of molecular evolution are similar within individuals of the same lineage, but can differ significantly among lineages, reinforcing the evolutionary distinctiveness of the Galapagos giant tortoise species. Notably, differences in mutation accumulation among lineages do not align with simple population genetic predictions, suggesting that the drivers of purifying selection are more complex than is currently appreciated. By integrating results from earlier population genetic and phylogeographic studies with new findings from the analysis of whole genomes, we provide the most in-depth insights to date on the evolution of Galapagos giant tortoises, and identify discrepancies between expectation from population genetic theory and empirical data that warrant further scrutiny.


Assuntos
Tartarugas , Animais , Evolução Molecular , Genética Populacional , Humanos , Densidade Demográfica , Tartarugas/genética , Sequenciamento Completo do Genoma
7.
Mol Ecol ; 28(1): 66-85, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30471158

RESUMO

Understanding the mechanisms that enforce, maintain or reverse the process of speciation is an important challenge in evolutionary biology. This study investigates the patterns of divergence and discusses the processes that form and maintain divergent lineages of the tsetse fly Glossina fuscipes fuscipes in Uganda. We sampled 251 flies from 18 sites spanning known genetic lineages and the four admixture zones between them. We apply population genomics, hybrid zone and approximate Bayesian computation to the analysis of three types of genetic markers: 55,267 double-digest restriction site-associated DNA (ddRAD) SNPs to assess genome-wide admixture, 16 microsatellites to provide continuity with published data and accurate biogeographic modelling, and a 491-bp fragment of mitochondrial cytochrome oxidase I and II to infer maternal inheritance patterns. Admixture zones correspond with regions impacted by the reorganization of Uganda's river networks that occurred during the formation of the West African Rift system over the last several hundred thousand years. Because tsetse fly population distributions are defined by rivers, admixture zones likely represent both old and new regions of secondary contact. Our results indicate that older hybrid zones contain mostly parental types, while younger zones contain variable hybrid types resulting from multiple generations of interbreeding. These findings suggest that reproductive barriers are nearly complete in the older admixture zones, while nearly absent in the younger admixture zones. Findings are consistent with predictions of hybrid zone theory: Populations in zones of secondary contact transition rapidly from early to late stages of speciation or collapse all together.


Assuntos
Especiação Genética , Metagenômica , Repetições de Microssatélites/genética , Moscas Tsé-Tsé/genética , Animais , Teorema de Bayes , DNA Mitocondrial/genética , Genoma de Inseto/genética , Haplótipos/genética , Hibridização Genética , Moscas Tsé-Tsé/patogenicidade , Uganda/epidemiologia
8.
Conserv Biol ; 33(6): 1404-1414, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-30901116

RESUMO

Hybridization poses a major challenge for species conservation because it threatens both genetic integrity and adaptive potential. Yet, hybridization can occasionally offer unprecedented opportunity for species recovery if the genome of an extinct taxon is present among living hybrids such that selective breeding could recapture it. We explored the design elements for establishing a captive-breeding program for Galapagos tortoises (Chelonoidis spp.) built around individuals with admixed ancestry involving an extinct species. The target individuals were hybrids between the extinct species from Floreana Island, C. niger, and an extant species, C. becki, which were recently found in the endemic range of C. becki, from Wolf Volcano on Isabela Island. We combined genotypic data from 35 tortoises with high ancestry from C. niger with forward-in-time simulations to explore captive breeding strategies that maximized overall genetic diversity and ancestry from C. niger while accommodating resource constraints, species biology, and the urgency to return tortoises to Floreana Island for facilitating ecosystem restoration. Overall genetic diversity was maximized when in the simulation tortoises were organized in relatively small breeding groups. Substantial amounts of the C. niger genome were captured despite limited resources available for selectively breeding tortoises in captivity. Genetic diversity was maximized when captive-bred offspring were released to the wild rather than being used as additional breeders. Our results provide genetic-based and practical guidance on the inclusion of hybrids with genomic representation from extinct taxa into species restoration programs and informs the ongoing debate on the value of hybrids in biodiversity conservation.


Reproducción en Cautiverio Informada Genéticamente de Híbridos de una Especie Extinta de Tortuga de las Galápagos Resumen La hibridación representa un obstáculo importante para la conservación de especies ya que amenaza tanto a la integridad genética como al potencial adaptativo. Aun así, la hibridación ocasionalmente puede ofrecer una oportunidad sin precedentes para la recuperación de una especie si el genoma de un taxón extinto está presente entre los híbridos vivientes de tal manera que la reproducción selectiva pudiera recuperarlo. Exploramos los elementos de diseño para el establecimiento de un programa de reproducción en cautiverio de la tortuga de las Galápagos (Chelonoidis spp.) construido en torno a los individuos con linajes mixtos que incluyeran una especie extinta. Los individuos fueron los híbridos de la especie extinta en la Isla Floreana, C. niger, y la especie viviente C. becki, encontrados recientemente en la distribución geográfica endémica de la segunda especie en el Volcán Wolf (Isla Isabela). Combinamos los datos genotípicos de 35 tortugas con un linaje cargado de C. niger usando simulaciones futuras de la descendencia generada por el programa para explorar las estrategias de reproducción en cautiverio que maximizaran en general la diversidad genética y el linaje de C. niger a la vez que se ajustaba a las restricciones de recursos, la biología de la especie y la urgencia por regresar las tortugas a la Isla Floreana para facilitar la restauración del ecosistema. En general, la diversidad genética se maximizó cuando en la simulación las tortugas estuvieron organizadas en grupos de reproducción relativamente pequeños y cuando cantidades sustanciales del genoma de C. niger fueron capturados con base en los recursos disponibles para reproducir selectivamente a las tortugas en cautiverio. La diversidad genética se vio especialmente maximizada cuando las crías reproducidas en cautiverio fueron liberadas en lugar de ser utilizadas como reproductoras adicionales. Nuestros resultados proporcionan una guía práctica y basada en la genética para la inclusión de híbridos con representación genómica de un taxón extinto en los programas de restauración de especies. Cuando incorporamos a los híbridos con diversidad genética que previamente se creía perdida en los programas con el propósito de la reintroducción de especies, nuestro estudio informa al debate continuo sobre el valor de los híbridos para la conservación de la biodiversidad.


Assuntos
Tartarugas , Animais , Cruzamento , Conservação dos Recursos Naturais , Ecossistema , Ilhas
9.
Proc Biol Sci ; 285(1880)2018 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-29875297

RESUMO

Urbanization often substantially influences animal movement and gene flow. However, few studies to date have examined gene flow of the same species across multiple cities. In this study, we examine brown rats (Rattus norvegicus) to test hypotheses about the repeatability of neutral evolution across four cities: Salvador, Brazil; New Orleans, USA; Vancouver, Canada; and New York City, USA. At least 150 rats were sampled from each city and genotyped for a minimum of 15 000 genome-wide single nucleotide polymorphisms. Levels of genome-wide diversity were similar across cities, but varied across neighbourhoods within cities. All four populations exhibited high spatial autocorrelation at the shortest distance classes (less than 500 m) owing to limited dispersal. Coancestry and evolutionary clustering analyses identified genetic discontinuities within each city that coincided with a resource desert in New York City, major waterways in New Orleans, and roads in Salvador and Vancouver. Such replicated studies are crucial to assessing the generality of predictions from urban evolution, and have practical applications for pest management and public health. Future studies should include a range of global cities in different biomes, incorporate multiple species, and examine the impact of specific characteristics of the built environment and human socioeconomics on gene flow.


Assuntos
Fluxo Gênico , Genótipo , Polimorfismo de Nucleotídeo Único , Brasil , Colúmbia Britânica , Cidades , Análise por Conglomerados , Nova Orleans , Cidade de Nova Iorque
10.
PLoS Pathog ; 12(7): e1005759, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27414806

RESUMO

Hosts including humans, other vertebrates, and arthropods, are frequently infected with heterogeneous populations of pathogens. Within-host pathogen diversity has major implications for human health, epidemiology, and pathogen evolution. However, pathogen diversity within-hosts is difficult to characterize and little is known about the levels and sources of within-host diversity maintained in natural populations of disease vectors. Here, we examine genomic variation of the Lyme disease bacteria, Borrelia burgdorferi (Bb), in 98 individual field-collected tick vectors as a model for study of within-host processes. Deep population sequencing reveals extensive and previously undocumented levels of Bb variation: the majority (~70%) of ticks harbor mixed strain infections, which we define as levels Bb diversity pre-existing in a diverse inoculum. Within-tick diversity is thus a sample of the variation present within vertebrate hosts. Within individual ticks, we detect signatures of positive selection. Genes most commonly under positive selection across ticks include those involved in dissemination in vertebrate hosts and evasion of the vertebrate immune complement. By focusing on tick-borne Bb, we show that vectors can serve as epidemiological and evolutionary sentinels: within-vector pathogen diversity can be a useful and unbiased way to survey circulating pathogen diversity and identify evolutionary processes occurring in natural transmission cycles.


Assuntos
Borrelia burgdorferi/genética , Insetos Vetores/genética , Ixodes/parasitologia , Doença de Lyme/epidemiologia , Animais , Variação Genética
11.
J Hered ; 109(6): 620-630, 2018 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-29490038

RESUMO

An aim of many captive breeding programs is to increase population sizes for reintroduction and establishment of self-sustaining wild populations. Genetic analyses play a critical role in these programs: monitoring genetic variation, identifying the origin of individuals, and assigning parentage to track family sizes. Here, we use genetic pedigree analyses to examine 3 seasons of a pilot breeding program for the Floreana island Galapagos giant tortoise, C. niger, that had been declared extinct for ~150 years until individuals with mixed ancestry were recently discovered. We determined that 8 of 9 founding individuals were assigned parentage to at least 1 of 130 offspring produced, though there was considerable reproductive skew. In addition, we observed that genetic diversity of the progeny was lower than that of the founders. Despite the observed reproductive skew, we did not see evidence for assortative mating based on relatedness, but there was a trend toward reduced fitness when more related individuals bred. Finally, we found that the majority of progeny had ancestry assigned to the Floreana species (mean ± SE = 0.51 ± 0.02), though individual estimates varied. The success of these pilot seasons bodes well for a larger breeding program to help restore the previously extinct tortoise from Floreana island. Future efforts should continue to monitor for reproductive skew and assortative mating to maintain allelic diversity. We would also recommend forming smaller breeding groups and rotating individuals among them to prevent long-term reproductive skew among pairs.


Assuntos
Cruzamento , Tartarugas , Animais , Conservação dos Recursos Naturais , Feminino , Variação Genética , Masculino , Tartarugas/genética
12.
J Hered ; 109(6): 631-640, 2018 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-29659893

RESUMO

Empirical population genetic studies generally rely on sampling subsets of the population(s) of interest and of the nuclear or organellar genome targeted, assuming each is representative of the whole. Violations of these assumptions may impact population-level parameter estimation and lead to spurious inferences. Here, we used targeted capture to sequence the full mitochondrial genome from 123 individuals of the Galapagos giant tortoise endemic to Pinzón Island (Chelonoidis duncanensis) sampled at 2 time points pre- and postbottleneck (circa 1906 and 2014) to explicitly assess differences in diversity estimates and demographic reconstructions based on subsets of the mitochondrial genome versus the full sequences and to evaluate potential biases associated with diversity estimates and demographic reconstructions from postbottlenecked samples alone. Haplotypic diversities were equal between the temporal samples based on the full mitochondrial genome, but single gene estimates suggested either decreases or increases in diversity depending upon the region. Demographic reconstructions based on the full sequence were more similar between the temporal samples than those based on the control region alone, or a subset of 3 regions, where the trends in population size changes shifted in magnitude and direction between the temporal samples. In all cases, the estimated coalescent point was more distant for the historical than contemporary sample. In summary, our results empirically demonstrate the influence of sampling bias when interpreting population genetic patterns and punctuate the need for careful consideration of potentially conflicting evolutionary signal across the mitochondrial genome.


Assuntos
Variação Genética , Genoma Mitocondrial , Tartarugas/genética , Animais , DNA Mitocondrial , Equador , Genética Populacional , Viés de Seleção , Análise de Sequência de DNA
13.
J Hered ; 109(6): 611-619, 2018 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-29986032

RESUMO

Genome-wide assessments allow for fuller characterization of genetic diversity, finer-scale population delineation, and better detection of demographically significant units to guide conservation compared with those based on "traditional" markers. Galapagos giant tortoises (Chelonoidis spp.) have long provided a case study for how evolutionary genetics may be applied to advance species conservation. Ongoing efforts to bolster tortoise populations, which have declined by 90%, have been informed by analyses of mitochondrial DNA sequence and microsatellite genotypic data, but could benefit from genome-wide markers. Taking this next step, we used double-digest restriction-site associated DNA sequencing to collect genotypic data at >26000 single nucleotide polymorphisms (SNPs) for 117 individuals representing all recognized extant Galapagos giant tortoise species. We then quantified genetic diversity, population structure, and compared results to estimates from mitochondrial DNA and microsatellite loci. Our analyses detected 12 genetic lineages concordant with the 11 named species as well as previously described structure within one species, C. becki. Furthermore, the SNPs provided increased resolution, detecting admixture in 4 individuals. SNP-based estimates of diversity and differentiation were significantly correlated with those derived from nuclear microsatellite loci and mitochondrial DNA sequences. The SNP toolkit presented here will serve as a resource for advancing efforts to understand tortoise evolution, species radiations, and aid conservation of the Galapagos tortoise species complex.


Assuntos
Especiação Genética , Variação Genética , Tartarugas/genética , Animais , DNA Mitocondrial , Genoma , Repetições de Microssatélites , Polimorfismo de Nucleotídeo Único , Tartarugas/classificação
14.
Cell Mol Life Sci ; 73(17): 3387-400, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26973180

RESUMO

Trypanosoma brucei rhodesiense is one of the causative agents of human sleeping sickness, a fatal disease that is transmitted by tsetse flies and restricted to Sub-Saharan Africa. Here we investigate two independent lines of T. b. rhodesiense that have been selected with the drugs melarsoprol and pentamidine over the course of 2 years, until they exhibited stable cross-resistance to an unprecedented degree. We apply comparative genomics and transcriptomics to identify the underlying mutations. Only few mutations have become fixed during selection. Three genes were affected by mutations in both lines: the aminopurine transporter AT1, the aquaporin AQP2, and the RNA-binding protein UBP1. The melarsoprol-selected line carried a large deletion including the adenosine transporter gene AT1, whereas the pentamidine-selected line carried a heterozygous point mutation in AT1, G430R, which rendered the transporter non-functional. Both resistant lines had lost AQP2, and both lines carried the same point mutation, R131L, in the RNA-binding motif of UBP1. The finding that concomitant deletion of the known resistance genes AT1 and AQP2 in T. b. brucei failed to phenocopy the high levels of resistance of the T. b. rhodesiense mutants indicated a possible role of UBP1 in melarsoprol-pentamidine cross-resistance. However, homozygous in situ expression of UBP1-Leu(131) in T. b. brucei did not affect the sensitivity to melarsoprol or pentamidine.


Assuntos
Resistência a Medicamentos/genética , Genoma de Protozoário , Trypanosoma brucei rhodesiense/genética , Sequência de Aminoácidos , Aquaporinas/genética , Aquaporinas/metabolismo , Hibridização Genômica Comparativa , DNA de Protozoário/química , DNA de Protozoário/isolamento & purificação , DNA de Protozoário/metabolismo , Heterozigoto , Humanos , Masculino , Melarsoprol/farmacologia , Proteínas de Transporte de Nucleosídeos/genética , Proteínas de Transporte de Nucleosídeos/metabolismo , Testes de Sensibilidade Parasitária , Pentamidina/farmacologia , Fenótipo , Polimorfismo de Nucleotídeo Único , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Alinhamento de Sequência , Tripanossomicidas/farmacologia , Trypanosoma brucei rhodesiense/efeitos dos fármacos , Trypanosoma brucei rhodesiense/isolamento & purificação , Tripanossomíase Africana/diagnóstico , Tripanossomíase Africana/parasitologia
15.
BMC Genomics ; 17(1): 888, 2016 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-27821055

RESUMO

BACKGROUND: Babesia microti is an emerging tick-borne apicomplexan parasite with increasing geographic range and incidence in the United States. The rapid expansion of B. microti into its current distribution in the northeastern USA has been due to the range expansion of the tick vector, Ixodes scapularis, upon which the causative agent is dependent for transmission to humans. RESULTS: To reconstruct the history of B. microti in the continental USA and clarify the evolutionary origin of human strains, we used multiplexed hybrid capture of 25 B. microti isolates obtained from I. scapularis and human blood. Despite low genomic variation compared with other Apicomplexa, B. microti was strongly structured into three highly differentiated genetic clusters in the northeastern USA. Bayesian analyses of the apicoplast genomes suggest that the origin of the current diversity of B. microti in northeastern USA dates back 46 thousand years with a signature of recent population expansion in the last 1000 years. Human-derived samples belonged to two rarely intermixing clusters, raising the possibility of highly divergent infectious phenotypes in humans. CONCLUSIONS: Our results validate the multiplexed hybrid capture strategy for characterizing genome-wide diversity and relatedness of B. microti from ticks and humans. We find strong population structure in B. microti samples from the Northeast indicating potential barriers to gene flow.


Assuntos
Babesia microti/genética , Genética Populacional , Genoma de Protozoário , Genômica , Animais , Babesia microti/classificação , Babesia microti/microbiologia , Babesiose/parasitologia , Babesiose/transmissão , Borrelia burgdorferi , Variação Genética , Genômica/métodos , Humanos , Filogenia , Polimorfismo de Nucleotídeo Único , Estados Unidos
16.
Proc Biol Sci ; 283(1841)2016 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-27798305

RESUMO

Native to China and Mongolia, the brown rat (Rattus norvegicus) now enjoys a worldwide distribution. While black rats and the house mouse tracked the regional development of human agricultural settlements, brown rats did not appear in Europe until the 1500s, suggesting their range expansion was a response to relatively recent increases in global trade. We inferred the global phylogeography of brown rats using 32 k SNPs, and detected 13 evolutionary clusters within five expansion routes. One cluster arose following a southward expansion into Southeast Asia. Three additional clusters arose from two independent eastward expansions: one expansion from Russia to the Aleutian Archipelago, and a second to western North America. Westward expansion resulted in the colonization of Europe from which subsequent rapid colonization of Africa, the Americas and Australasia occurred, and multiple evolutionary clusters were detected. An astonishing degree of fine-grained clustering between and within sampling sites underscored the extent to which urban heterogeneity shaped genetic structure of commensal rodents. Surprisingly, few individuals were recent migrants, suggesting that recruitment into established populations is limited. Understanding the global population structure of R. norvegicus offers novel perspectives on the forces driving the spread of zoonotic disease, and aids in development of rat eradication programmes.


Assuntos
Evolução Molecular , Genética Populacional , Ratos/genética , África , Animais , Australásia , China , Europa (Continente) , Humanos , Mongólia , América do Norte , Polimorfismo de Nucleotídeo Único , Federação Russa
17.
Mol Ecol ; 25(9): 2065-80, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26880353

RESUMO

Hemlock woolly adelgid, Adelges tsugae, is an invasive pest of hemlock trees (Tsuga) in eastern North America. We used 14 microsatellites and mitochondrial COI sequences to assess its worldwide genetic structure and reconstruct its colonization history. The resulting information about its life cycle, biogeography and host specialization could help predict invasion by insect herbivores. We identified eight endemic lineages of hemlock adelgids in central China, western China, Ulleung Island (South Korea), western North America, and two each in Taiwan and Japan, with the Japanese lineages specializing on different Tsuga species. Adelgid life cycles varied at local and continental scales with different sexual, obligately asexual and facultatively asexual lineages. Adelgids in western North America exhibited very high microsatellite heterozygosity, which suggests ancient asexuality. The earliest lineages diverged in Asia during Pleistocene glacial periods, as estimated using approximate Bayesian computation. Colonization of western North America was estimated to have occurred prior to the last glacial period by adelgids directly ancestral to those in southern Japan, perhaps carried by birds. The modern invasion from southern Japan to eastern North America caused an extreme genetic bottleneck with just two closely related clones detected throughout the introduced range. Both colonization events to North America involved host shifts to unrelated hemlock species. These results suggest that genetic diversity, host specialization and host phylogeny are not predictive of adelgid invasion. Monitoring non-native sentinel host trees and focusing on invasion pathways might be more effective methods of preventing invasion than making predictions using species traits or evolutionary history.


Assuntos
Genética Populacional , Hemípteros/genética , Cicutas (Apiáceas) , Espécies Introduzidas , Animais , Teorema de Bayes , DNA Mitocondrial/genética , Ásia Oriental , Genótipo , Herbivoria , Repetições de Microssatélites , América do Norte , Análise de Sequência de DNA
18.
Oecologia ; 181(3): 885-94, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27041683

RESUMO

Oceanic islands are often inhabited by endemic species that have undergone substantial morphological evolutionary change due to processes of multiple colonizations from various source populations, dispersal, and local adaptation. Galápagos marine iguanas are an example of an island endemic exhibiting high morphological diversity, including substantial body size variation among populations and sexes, but the causes and magnitude of this variation are not well understood. We obtained morphological measurements from marine iguanas throughout their distribution range. These data were combined with genetic and local environmental data from each population to investigate the effects of evolutionary history and environmental conditions on body size and shape variation and sexual dimorphism. Our results indicate that body size and shape are highly variable among populations. Sea surface temperature and island perimeter, but not evolutionary history as depicted by phylogeographic patterns in this species, explain variation in body size among populations. Conversely, evolutionary history, but not environmental parameters or island size, was found to influence variation in body shape among populations. Finally, in all populations except one, we found strong sexual dimorphism in body size and shape in which males are larger, with higher heads than females, while females have longer heads than males. Differences among populations suggest that plasticity and/or genetic adaptation may shape body size and shape variation in marine iguanas. This study will help target future investigations to address the contribution of plasticity versus genetic adaptation on size and shape variation in marine iguanas.


Assuntos
Evolução Biológica , Iguanas , Animais , Tamanho Corporal , Ecologia , Ilhas
19.
J Hered ; 107(2): 181-6, 2016 03.
Artigo em Inglês | MEDLINE | ID: mdl-26733693

RESUMO

The Norway rat, Rattus norvegicus, is one of the most important pest species globally and the main reservoir of leptospires causing human leptospirosis in the urban slums of tropical regions. Rodent control is a frequent strategy in those settings to prevent the disease but rapid growth from residual populations and immigration limit the long-term effectiveness of interventions. To characterize the breeding ecology of R. norvegicus and provide needed information for the level of genetic mixing, which can help identify inter-connected eradication units, we estimated the occurrence of multiple paternity, distances between mothers and sires, and inbreeding in rats from urban slum habitat in Salvador, Brazil. We genotyped 9 pregnant females, their 66 offspring, and 371 males at 16 microsatellite loci. Multiple paternity was observed in 22% (2/9) of the study litters. Of the 12 sires that contributed to the 9 litters, we identified 5 (42%) of those sires among our genotyped males. Related males were captured in close proximity to pregnant females (the mean inter-parent trapping distance per litter was 70 m, ±58 m SD). Levels of relatedness between mother-sire pairs were higher than expected and significantly higher than relatedness between all females and non-sire males. Our findings indicate multiple paternity is common, inbreeding is apparent, and that mother-sire dyads occur in close proximity within the study area. This information is relevant to improve the spatial definition of the eradication units that may enhance the effectiveness of rodent management programs aimed at preventing human leptospirosis. High levels of inbreeding may also be a sign that eradication efforts are successful.


Assuntos
Genética Populacional , Endogamia , Ratos/genética , Comportamento Sexual Animal , Animais , Brasil , Cidades , Feminino , Genótipo , Funções Verossimilhança , Masculino , Repetições de Microssatélites , Áreas de Pobreza , Gravidez , Análise de Sequência de DNA
20.
Am J Phys Anthropol ; 161(1): 181-5, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27393125

RESUMO

OBJECTIVES: We explored whether variation in the sweet taste receptor protein T1R3 in primates could contribute to differences in sweet taste repertoire among species, potentially reflecting coevolution with local plants. Specifically, we examined which primates are likely to be sweet "tasters" of brazzein, a protein found in the fruit of the African plant Pentadiplandra brazzeana that tastes intensely sweet to humans, but provides little energy. Sweet proteins like brazzein are thought to mimic the taste of sugars to entice seed dispersers. We examined the evolution of T1R3 and assessed whether primates are likely "deceived" by such biochemical mimicry. METHODS: Using published and new sequence data for TAS1R3, we characterized 57 primates and other mammals at the two amino acid sites necessary to taste brazzein to determine which species are tasters. We further used dN/dS-based methods to look for statistical evidence of accelerated evolution in this protein across primate lineages. RESULTS: The taster genotype is shared across most catarrhines, suggesting that most African primates can be "tricked" into eating and dispersing P. brazzeana's seeds for little caloric gain. Western gorillas (Gorilla gorilla), however, exhibit derived mutations at the two brazzein-critical positions, and although fruit is a substantial portion of the western gorilla diet, they have not been observed to eat P. brazzeana. Our analyses of protein evolution found no signature of positive selection on TAS1R3 along the gorilla lineage. DISCUSSION: We propose that the gorilla-specific mutations at the TAS1R3 locus encoding T1R3 could be a counter-adaptation to the false sweet signal of brazzein.


Assuntos
Evolução Biológica , Gorilla gorilla , Magnoliopsida/fisiologia , Proteínas de Plantas/fisiologia , Receptores Acoplados a Proteínas G , Paladar , Animais , Antropologia Física , Gorilla gorilla/genética , Gorilla gorilla/fisiologia , Humanos , Primatas/genética , Primatas/fisiologia , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/fisiologia , Dispersão de Sementes , Paladar/genética , Paladar/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA