Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Med Chem ; 3(1): 21-7, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17266620

RESUMO

Annually, approximately 30,000 people suffer from aneurysmal subarachnoid hemorrhage (SAH) in the United States. In an estimated 5% of these patients, the hemorrhage is difficult to diagnose using conventional methods. Clinicians must rely upon a combination of clinical history, Computerized Tomography (CT) scan evidence and lumbar puncture results to diagnose and differentiate SAH from a traumatic spinal tap (blood in the spinal fluid due to the procedure). Here we describe an algorithm based development of an analytic methodology using visible spectroscopy to reliably quantify bilirubin in hemorrhagic spinal fluid. The analysis, which may be useful for diagnoses concerning hemorrhagic stroke, is based on the detection of bilirubin, and concomitant blood products produced within the Cerebral Spinal Fluid (CSF) following SAH. The algorithm quantifies bilirubin (0.3 to 10 mg/dL) from the resultant absorption spectrum. A model is developed from standard visible spectroscopic absorption curves of bilirubin and hemoglobin by applying traditional Beer's Law principles. The model is coupled to a modified partial least square analysis and control theory concept where the bilirubin is the "signal" and is masked by hemoglobin "noise." This paper describes the computational methods, sensitivity and utility of a system to quantify bilirubin in CSF like solutions containing hemoglobin and bilirubin over 0.5 g/dL-10 g/dL of hemoglobin concentrations.


Assuntos
Algoritmos , Bilirrubina/líquido cefalorraquidiano , Hemorragia Subaracnóidea/líquido cefalorraquidiano , Bilirrubina/química , Calibragem , Hemoglobinas/química , Humanos , Modelos Químicos
2.
J Biol Chem ; 278(47): 46210-8, 2003 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-12963730

RESUMO

Multiple inositol polyphosphate phosphatase (MIPP) is an enzyme that, in vitro, has the interesting property of degrading higher inositol polyphosphates to the Ca2+ second messenger, inositol 1,4,5-trisphosphate (Ins(1,4,5)P3), independently of inositol lipid breakdown. We hypothesized that a truncated cytosolic form of the largely endoplasmic reticulum-confined MIPP (cyt-MIPP) could represent an important new tool in the investigation of Ins(1,4,5)P3-dependent intracellular Ca2+ homeostasis. To optimize our ability to judge the impact of cyt-MIPP on intracellular Ca2+ concentration ([Ca2+]i) we chose a poorly responsive beta-cell line (HIT M2.2.2) with an abnormally low [Ca2+]i. Our results show for the first time in an intact mammalian cell that cyt-MIPP expression leads to a significant enhancement of Ins(1,4,5)P3 concentration. This is achieved without a significant interference from other cyt-MIPP-derived inositol phosphates. Furthermore, the low basal [Ca2+]i of these cells was raised to normal levels (35 to 115 nm) when they expressed cyt-MIPP. Noteworthy is that the normal feeble glucose-induced Ca2+ response of HIT M2.2.2 cells was enhanced dramatically by mechanisms related to this increase in basal [Ca2+]i. These data support the use of cyt-MIPP as an important tool in investigating Ins(1,4,5)P3-dependent Ca2+ homeostasis and suggest a close link between Ins(1,4,5)P3 concentration and basal [Ca2+]i, the latter being an important modulator of Ca2+ signaling in the pancreatic beta-cell.


Assuntos
Cálcio/metabolismo , Citosol/enzimologia , Monoéster Fosfórico Hidrolases/fisiologia , Animais , Linhagem Celular , Citoplasma/metabolismo , Citosol/metabolismo , Eletrofisiologia , Glucose/farmacologia , Inositol 1,4,5-Trifosfato/análise , Inositol 1,4,5-Trifosfato/metabolismo , Fosfatos de Inositol/análise , Monoéster Fosfórico Hidrolases/metabolismo , Ratos , Deleção de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA