Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(26): e202402343, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38639055

RESUMO

Localized excitation in traditional organic photocatalysts typically prevents the generation and extraction of photo-induced free charge carriers, limiting their activity enhancement under illumination. Here, we enhance delocalized photoexcitation of small molecular photovoltaic catalysts by weakening their electron-phonon coupling via rational fluoro-substitution. The optimized 2FBP-4F catalyst we develop here exhibits a minimized Huang-Rhys factor of 0.35 in solution, high dielectric constant and strong crystallization in the solid state. As a result, the energy barrier for exciton dissociation is decreased, and more importantly, polarons are unusually observed in 2FBP-4F nanoparticles (NPs). With the increased hole transfer efficiency and prolonged charge carrier lifetime highly related to enhanced exciton delocalization, the PM6 : 2FBP-4F heterojunction NPs at varied concentration exhibit much higher optimized photocatalytic activity (207.6-561.8 mmol h-1 g-1) for hydrogen evolution than the control PM6 : BP-4F and PM6 : 2FBP-6F NPs, as well as other reported photocatalysts under simulated solar light (AM 1.5G, 100 mW cm-2).

2.
J Am Chem Soc ; 144(28): 12747-12755, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35815841

RESUMO

The short exciton diffusion length (LD) associated with most classical organic photocatalysts (5-10 nm) imposes severe limits on photocatalytic hydrogen evolution efficiency. Here, a photovoltaic molecule (F1) without electron-deficient units at the central building block was designed and synthesized to improve the photoluminescence quantum yield (PLQY). With the enhanced PLQY of 9.3% and a large integral spectral overlap of 3.32 × 1016 nm4 M-1 cm-1, the average LD of F1 film increases to 20 nm, nearly twice the length of the control photovoltaic molecule (Y6). Then, the single-component organic nanoparticles (SC-NPs) based on F1 show an optimized average hydrogen evolution rate (HER) of 152.60 mmol h-1 g-1 under AM 1.5G sunlight (100 mW cm-2) illumination for 10 h, which is among the best results for photocatalytic hydrogen evolution.

3.
J Am Chem Soc ; 142(44): 18741-18745, 2020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-33085460

RESUMO

Typical organic photovoltaic materials show high Urbach energies (ca. 25-50 meV), which is considerably higher than those of their inorganic counterparts and limits further improvement in the device efficiency of organic solar cells (OSCs). In this study, we introduce a facile method of selenium substitution to reduce the Urbach energy of organic photovoltaic materials to 20.4 meV (Y6Se), which is the lowest value reported for high-performance organic photovoltaic materials and very close to those (ca. 15 meV) of typical inorganic/hybrid semiconductors, such as crystalline silicon, gallium nitride, and lead-halide perovskite. Next, OSCs based on Y6Se showed 17.7% efficiency, which is among the best results for OSCs and the record efficiency of as-cast single junction OSCs to date.

4.
Org Biomol Chem ; 14(37): 8702-8706, 2016 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-27722735

RESUMO

Pd-Catalyzed C(sp3)-C(sp2) cross-coupling of Y(CH2SiMe3)3(THF)2 with vinyl bromides and triflates has been developed for efficient synthesis of various allyltrimethylsilanes. The cross-coupling reaction was conducted at room temperature with low catalyst loading of either Pd(PPh3)4 or Pd(PPh3)2Cl2, and exhibited high efficiency and a broad substrate scope. In combination with the cross-coupling by the Lewis-acid catalyzed Hosomi-Sakurai reaction, a novel three-component one-pot cascade reaction was then accomplished to deliver homoallylic alcohols and ethers with high regioselectivity and diastereoselectivity. The three-component reaction defined the yttrium complex as a novel one-carbon synthon, which could either trigger bifunctionalization of alkenes or link two electrophiles and would find applications in organic synthesis.

5.
Nat Commun ; 15(1): 2784, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38555349

RESUMO

An organic photovoltaic bulk heterojunction comprises of a mixture of donor and acceptor materials, forming a semi-crystalline thin film with both crystalline and amorphous domains. Domain sizes critically impact the device performance; however, conventional X-ray scattering techniques cannot detect the contrast between donor and acceptor materials within the amorphous intermixing regions. In this study, we employ neutron scattering and targeted deuteration of acceptor materials to enhance the scattering contrast by nearly one order of magnitude. Remarkably, the PM6:deuterated Y6 system reveals a new length scale, indicating short-range aggregation of Y6 molecules in the amorphous intermixing regions. All-atom molecular dynamics simulations confirm that this short-range aggregation is an inherent morphological advantage of Y6 which effectively assists charge extraction and suppresses charge recombination as shown by capacitance spectroscopy. Our findings uncover the amorphous nanomorphology of organic photovoltaic thin films, providing crucial insights into the morphology-driven device performance.

6.
ACS Appl Mater Interfaces ; 14(12): 14532-14540, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35298146

RESUMO

Side-chain engineering is an efficient molecular design strategy for morphology optimization and performance improvement of organic solar cells (OSCs). Herein, a novel small-molecule donor C-2F, which owns a benzo[1,2-b:4,5-b']dithiophene (BDT) central unit with a symmetrically difluorinated benzene ring as a conjugated side chain, has been synthesized. The conjugated side chain possesses both the symmetry and halogenation effect in novel small molecular donor material. The photovoltaic devices were fabricated with N3 as an acceptor. C-2F:N3 based devices achieved an outstanding power conversion efficiency of 14.64% with a Jsc of 24.87 mA/cm2, a Voc of 0.85 V, and an FF of 69.33%. Then, we investigated the basic material properties, photovoltaic mechanism, and active layer morphology, and the results show that this molecular design strategy of the symmetrically difluorinated moiety as the conjugated side chain provides an effective method for fine-tuning the molecular stacking pattern and active layer phase separation morphology, to improve the all-small-molecule (ASM) OSCs' performances.

7.
Adv Mater ; 34(28): e2201600, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35545992

RESUMO

Designing ultrastrong near-infrared (NIR) absorbing organic semiconductors is a critical prerequisite for sensitive NIR thin film organic photodetectors (OPDs), especially in the region of beyond 900 nm, where the absorption coefficient of commercial single crystalline silicon (c-Si) is below 103 cm-1 . Herein, a pyrrolo[3,2-b]thieno[2,3-d]pyrrole heterocyclic core (named as BPPT) with strong electron-donating property and stretched geometry is developed. Relative to their analogue Y6, BPPT-contained molecules, BPPT-4F and BPPT-4Cl, show substantially upshifted and more delocalized highest occupied molecular orbitals, and larger transition dipole moments, leading to bathochromic and hyperchromic absorption spectra extending beyond 1000 nm with very large absorption coefficients (up to 3.7-4.3 × 105 cm-1 ) as thin films. These values are much higher than those (104 to 1 × 105 cm-1 ) of typical organic semiconductors, and 1-2 orders higher than those of commercial inorganic materials, such as c-Si, Ge, and InGaAs. The OPDs based on BPPT-4F or BPPT-4Cl blending polymer PBDB-T show high detectivity of above 1012 Jones in a wide wavelength range of 310-1010 nm with excellent peak values of 1.3-2.2 × 1013 Jones, respectively, which are comparable with and even better than those commercial inorganic photodetectors.

8.
Adv Sci (Weinh) ; 9(14): e2200578, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35315238

RESUMO

The tuning of vertical morphology is critical and challenging for organic solar cells (OSCs). In this work, a high open-circuit voltage (VOC ) binary D18-Cl/L8-BO system is attained while maintaining the high short-circuit current (JSC ) and fill factor (FF) by employing 1,4-diiodobenzene (DIB), a volatile solid additive. It is suggested that DIB can act as a linker between donor or/and acceptor molecules, which significantly modifies the active layer morphology. The overall crystalline packing of the donor and acceptor is enhanced, and the vertical domain sizes of phase separation are significantly decreased. All these morphological changes contribute to exciton dissociation, charge transport, and collection. Therefore, the best-performing device exhibits an efficiency of 18.7% with a VOC of 0.922 V, a JSC of 26.6 mA cm-2 , and an FF of 75.6%. As far as it is known, the VOC achieved here is by far the highest among the reported OSCs with efficiencies over 17%. This work demonstrates the high competence of solid additives with two iodine atoms to tune the morphology, particularly in the vertical direction, which can become a promising direction for future optimization of OSCs.

9.
Adv Sci (Weinh) ; 9(15): e2103428, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35322593

RESUMO

Two new fused-ring electron acceptor (FREA) isomers with nonlinear and linear molecular conformation, m-BAIDIC and p-BAIDIC, are designed and synthesized. Despite the similar light absorption range and energy levels, the two isomers exhibit distinct electron reorganization energies and molecular packing motifs, which are directly related to the molecular conformation. Compared with the nonlinear acceptor, the linear p-BAIDIC shows more ordered molecular packing and higher crystallinity. Furthermore, p-BAIDIC-based devices exhibit reduced nonradiative energy loss and improved charge transport mobilities. It is beneficial to enhance the open-circuit voltage (VOC ) and short-current current density (JSC ) of the devices. Therefore, the linear FREA, p-BAIDIC yields a relatively higher efficiency of 7.71% in the binary device with PM6, in comparison with the nonlinear m-BAIDIC. When p-BAIDIC is incorporated into the binary PM6/BO-4Cl system to form a ternary system, synergistic enhancements in VOC , JSC , fill factor (FF), and ultimately a high efficiency of 17.6% are achieved.

10.
JACS Au ; 1(10): 1733-1742, 2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34723276

RESUMO

Traditional organic photovoltaic materials exhibit low dielectric constants (εr) of 3 to 4, restricting the further enhancement of power conversion efficiencies (PCEs) of organic solar cells (OSCs). Herein we design and synthesize a fused-ring electron acceptor named Y6-4O through introducing an asymmetric highly polarizable oligo(ethylene glycol) side chain onto the pyrrole unit of Y6. Compared with alkylated Y6 (εr = 3.36), asymmetric glycolated Y6-4O shows a notably higher εr value of 5.13 and better solubility in nonhalogen solvents. Because of the higher εr value, the devices based on as-cast PM6:Y6-4O processed using toluene exhibit a higher charge separation yield, slower bimolecular recombination kinetics, and less voltage loss relative to the control devices based on PM6:Y6. Consequently, a high PCE of 15.2% is achieved for PM6:Y6-4O-based devices, whereas the PM6:Y6-based devices show PCEs of only 7.38%. 15.2% is the highest PCE for the as-cast nonhalogenated processed OSC devices, and it is also much higher than the values (<8.5%) reported for OSCs based on high-permittivity (εr > 5) organic photovoltaic semiconductors.

11.
Adv Mater ; 33(14): e2008134, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33656774

RESUMO

Typical organic semiconductor materials exhibit a high trap density of states, ranging from 1016 to 1018  cm-3 , which is one of the important factors in limiting the improvement of power conversion efficiencies (PCEs) of organic solar cells (OSCs). In order to reduce the trap density within OSCs, a new strategy to design and synthesize an electron acceptor analogue, BTPR, is developed, which is introduced into OSCs as a third component to enhance the molecular packing order of electron acceptor with and without blending a polymer donor. Finally, the as-cast ternary OSC devices employing BTPR show a notable PCE of 17.8%, with a low trap density (1015  cm-3 ) and a low energy loss (0.217 eV) caused by non-radiative recombination. This PCE is among the highest values for single-junction OSCs. The trap density of OSCs with the BTPR additives, as low as 1015  cm-3 , is comparable to and even lower than those of several typical high-performance inorganic/hybrid counterparts, like 1016  cm-3 for amorphous silicon, 1016  cm-3 for metal oxides, and 1014 to 1015  cm-3 for halide perovskite thin film, and makes it promising for OSCs to obtain a PCE of up to 20%.

12.
Nat Commun ; 12(1): 6226, 2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34711821

RESUMO

The bulk morphology of the active layer of organic solar cells (OSCs) is known to be crucial to the device performance. The thin film device structure breaks the symmetry into the in-plane direction and out-of-plane direction with respect to the substrate, leading to an intrinsic anisotropy in the bulk morphology. However, the characterization of out-of-plane nanomorphology within the active layer remains a grand challenge. Here, we utilized an X-ray scattering technique, Grazing-incident Transmission Small-angle X-ray Scattering (GTSAXS), to uncover this new morphology dimension. This technique was implemented on the model systems based on fullerene derivative (P3HT:PC71BM) and non-fullerene systems (PBDBT:ITIC, PM6:Y6), which demonstrated the successful extraction of the quantitative out-of-plane acceptor domain size of OSC systems. The detected in-plane and out-of-plane domain sizes show strong correlations with the device performance, particularly in terms of exciton dissociation and charge transfer. With the help of GTSAXS, one could obtain a more fundamental perception about the three-dimensional nanomorphology and new angles for morphology control strategies towards highly efficient photovoltaic devices.

13.
ACS Appl Mater Interfaces ; 12(45): 50660-50667, 2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33112591

RESUMO

The ternary strategy has been widely used in high-efficiency organic solar cells (OSCs). Herein, we successfully incorporated a mid-band-gap star-shaped acceptor, FBTIC, as the third component into the PM6/Y6 binary blend film, which not only achieved a panchromatic absorption but also significantly improved the open-circuit voltage (VOC) of the devices due to the high-lying lowest unoccupied molecular orbital (LUMO) of the FBTIC. Morphology characterizations show that star-shaped FBTIC molecules are amorphously distributed in the ternary system, and the finely tuned ternary film morphology facilitates the exciton dissociation and charge collection in ternary devices. As a result, the best PM6/Y6/FBTIC-based ternary OSCs achieved a power conversion efficiency (PCE) of 16.7% at a weight ratio of 1.0:1.0:0.2.

14.
Org Lett ; 20(3): 624-627, 2018 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-29320207

RESUMO

An organo rare-earth metal complex has been employed as a highly efficient nucleophile in Ni(0)-catalyzed C-O bond functionalization. The optimized catalytic system which consists of Ni(cod)2, PCy3, and t-BuONa could smoothly convert 1 equiv of naphthyl ethers to alkylated naphthalene analogues with 0.4 equiv of Ln(CH2SiMe3)3(THF)2, delivering good to excellent yields. The reaction system could also activate the ArCH2-O bond with mild base.

15.
Chem Commun (Camb) ; 52(31): 5425-7, 2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-27009850

RESUMO

The first C(sp(3))-C(sp(2)) cross-coupling of rare-earth metal alkyl complexes with aryl bromides has been developed. This reaction was conducted at low catalyst loading (0.5 mol%) and exhibited a broad substrate scope, thus providing a facile method for the synthesis of benzyltrimethylsilanes with diverse functional groups.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA