RESUMO
To elucidate the impact of CYP3A4 activity inhibition and genetic polymorphism on the metabolism of crizotinib. Enzymatic incubation systems for crizotinib were established, and Sprague-Dawley rats were utilized for in vivo experiments. Analytes were quantified using LC-MS/MS. Upon screening 122 drugs and natural compounds, proanthocyanidins emerged as inhibitor of crizotinib metabolism, exhibiting a relative inhibition rate of 93.7%. The IC50 values were 24.53 ± 0.32 µM in rat liver microsomes and 18.24 ± 0.12 µM in human liver microsomes. In vivo studies revealed that proanthocyanidins markedly affected the pharmacokinetic parameters of crizotinib. Co-administration led to a significant reduction in the AUC(0-t), Cmax of PF-06260182 (the primary metabolite of crizotinib), and the urinary metabolic ratio. This interaction is attributed to the mixed-type inhibition of liver microsome activity by proanthocyanidins. CYP3A4, being the principal metabolic enzyme for crizotinib, has its genetic polymorphisms significantly influencing crizotinib's pharmacokinetics. Kinetic data showed that the relative metabolic rates of crizotinib across 26 CYP3A4 variants ranged from 13.14% (CYP3A4.12, 13) to 188.57% (CYP3A4.33) when compared to the wild-type CYP3A4.1. Additionally, the inhibitory effects of proanthocyanidins varied between CYP3A4.12 and CYP3A4.33, when compared to the wild type. Our findings indicate that proanthocyanidins coadministration and CYP3A4 genetic polymorphism can significantly influence crizotinib metabolism.
Assuntos
Crizotinibe , Citocromo P-450 CYP3A , Interações Medicamentosas , Microssomos Hepáticos , Polimorfismo Genético , Ratos Sprague-Dawley , Crizotinibe/farmacocinética , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Animais , Humanos , Masculino , Microssomos Hepáticos/metabolismo , Microssomos Hepáticos/enzimologia , Microssomos Hepáticos/efeitos dos fármacos , Ratos , Piridinas/farmacocinética , Pirazóis/farmacocinética , Pirazóis/farmacologiaRESUMO
Cytochrome P450 2D6 (CYP2D6) exhibits rich genetic polymorphism, and functional changes caused by variations are the key reasons for differences in substrate drug systemic exposure. Discovering novel variants and defining their enzymatic kinetic characteristics can contribute to the personalized application of drugs. In this study, a data chain of variant-function-structure was established through population-based sequencing, baculovirus insect cell expression, in vitro enzymatic incubation, and ultrahigh performance liquid chromatography tandem mass spectrometry. Results revealed nine novel missense mutations in the exonic regions. After the corresponding microsomes were obtained, the kinetics of the variants were investigated using dextromethorphan as a probe substrate. It was found that the activities of CYP2D6.2, 10, 17, 35, 65, R28G, T76M, and E215K were significantly reduced, while D301V almost led to loss of enzyme function. Additionally, the relative clearance rate of R25Q was significantly increased. From the molecular structure perspective, the mutation sites are distributed outside the dextromethorphan binding pocket, suggesting that they primarily influence CYP2D6 activity via allosteric modulation. These research findings provide fundamental data for the precise application of CYP2D6 substrate drugs.
RESUMO
Resistance to temozolomide (TMZ), the frontline chemotherapeutic agent for glioblastoma (GBM), has emerged as a formidable obstacle, underscoring the imperative to identify alternative therapeutic strategies to improve patient outcomes. In this study, we comprehensively evaluated a novel agent, O6-methyl-2'-deoxyguanosine-5'-triphosphate (O6-methyl-dGTP) for its anti-GBM activity both in vitro and in vivo. Notably, O6-methyl-dGTP exhibited pronounced cytotoxicity against GBM cells, including those resistant to TMZ and overexpressing O6-methylguanine-DNA methyltransferase (MGMT). Mechanistic investigations revealed that O6-methyl-dGTP could be incorporated into genomic DNA, disrupting nucleotide pools balance, and inducing replication stress, resulting in S-phase arrest and DNA damage. The compound exerted its anti-tumor properties through the activation of AIF-mediated apoptosis and the parthanatos pathway. In vivo studies using U251 and Ln229 cell xenografts supported the robust tumor-inhibitory capacity of O6-methyl-dGTP. In an orthotopic transplantation model with U87MG cells, O6-methyl-dGTP showcased marginally superior tumor-suppressive activity compared to TMZ. In summary, our research, for the first time, underscores the potential of O6-methyl-dGTP as an effective candidate against GBM, laying a robust scientific groundwork for its potential clinical adoption in GBM treatment regimens.
Assuntos
Glioblastoma , Polifosfatos , Humanos , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Antineoplásicos Alquilantes/farmacologia , Antineoplásicos Alquilantes/uso terapêutico , Nucleosídeos/farmacologia , Nucleosídeos/uso terapêutico , Caspases , Linhagem Celular Tumoral , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Nucleotídeos , O(6)-Metilguanina-DNA Metiltransferase/metabolismo , O(6)-Metilguanina-DNA Metiltransferase/farmacologia , O(6)-Metilguanina-DNA Metiltransferase/uso terapêutico , Desoxiguanosina/farmacologia , Desoxiguanosina/uso terapêutico , DNA , Resistencia a Medicamentos AntineoplásicosRESUMO
AIM: Ibuprofen is the most commonly used analgesic. CYP polymorphisms are mainly responsible for the differences in drug metabolism among individuals. Variations in the ability of populations to metabolize ibuprofen can lead to drug exposure events. The aim of this study was to evaluate the effects of CYP2C19 and CYP3A4 polymorphisms on ibuprofen metabolism in a Chinese population. METHODS: First, 31 CYP2C19 and 12 CYP3A4 microsomal enzymes were identified using an insect expression system. Then, variants were evaluated using a mature incubation system. Moreover, ibuprofen metabolite content was determined via ultra-performance liquid chromatography-tandem mass spectrometry analysis. Finally, kinetic parameters of CYP2C19 and CYP3A4 genotypes were determined via Michaelis-Menten curve fitting. RESULTS: Most variants exhibited significantly altered intrinsic clearance compared to the wild type. In the CYP2C19 metabolic pathway, seven variants exhibited no significant alterations in intrinsic clearance (CLint), six variants exhibited significantly high CLint (121-291%), and the remaining 15 variants exhibited substantially reduced CLint (1-71%). In the CYP3A4 metabolic pathway, CYP3A4*30 was not detected in the metabolite content due to the absence of activity, and 10 variants exhibited significantly reduced CLint. CONCLUSION: To the best of our knowledge, this is the first study to assess the kinetic characteristics of 31 CYP2C19 and 12 CYP3A4 genotypes on ibuprofen metabolism. However, further studies are needed on poor metabolizers as they are more susceptible to drug exposure. Our findings suggest that the kinetic characteristics in combination with artificial intelligence to predict the toxicity of ibuprofen and reduce any adverse drug reactions.
Assuntos
Citocromo P-450 CYP3A , Ibuprofeno , Humanos , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Citocromo P-450 CYP2C19/genética , Inteligência Artificial , Polimorfismo GenéticoRESUMO
In this study, the effects of 17 CYP3A4 variants and drug-drug interactions (DDI) with its mechanism on alectinib metabolism were investigated. In vitro incubation systems of rat liver microsomes (RLM), human liver microsomes (HLM) and recombinant human CYP3A4 variants were established. The formers were used to screen potential drugs that inhibited alectinib metabolism and study the underlying mechanism, and the latter was used to determine the dynamic characteristics of CYP3A4 variants. Alectinib and its main metabolite M4 were quantitatively determined by ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). The results showed that compared with CYP3A4.1, only CYP3A4.29 showed higher catalytic activity, while the catalytic activity of CYP3A4.4, .7, .8, .12, .14, .16, .17, .18, .19, .20, .23, and .24 decreased significantly. Among them, the catalytic activity of CYP3A4.20 is the lowest, only 2.63% of that of CYP3A4.1. Based on the RLM incubation system in vitro, 81 drugs that may be combined with alectinib were screened, among which 18 drugs had an inhibition rate higher than 80%. In addition, nicardipine had an inhibition rate of 95.09% with a half-maximum inhibitory concentration (IC50) value of 3.54 ± 0.96 µM in RLM and 1.52 ± 0.038 µM in HLM, respectively. There was a mixture of non-competitive and anti-competitive inhibition of alectinib metabolism in both RLM and HLM. In vivo experiments of Sprague-Dawley (SD) rats, compared with the control group (30 mg/kg alectinib alone), the AUC(0-t), AUC(0-∞), Tmax and Cmax of alectinib administered in combination with 6 mg/kg nicardipine were significantly increased in the experimental group. In conclusion, the metabolism of alectinib was affected by polymorphisms of the CYP3A4 gene and nicardipine. This study provides reference data for clinical individualized administration of alectinib in the future.
Assuntos
Citocromo P-450 CYP3A , Sistema Enzimático do Citocromo P-450 , Ratos , Humanos , Animais , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Cromatografia Líquida , Ratos Sprague-Dawley , Nicardipino/metabolismo , Nicardipino/farmacologia , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas em Tandem , Interações Medicamentosas , Microssomos Hepáticos/metabolismoRESUMO
CONTEXT: Poziotinib and vonoprazan are two drugs mainly metabolized by CYP3A4. However, the drug-drug interaction between them is unknown. OBJECTIVE: To study the interaction mechanism and pharmacokinetics of poziotinib on vonoprazan. MATERIALS AND METHODS: In vitro experiments were performed with rat liver microsomes (RLMs) and the contents of vonoprazan and its metabolite were then determined with UPLC-MS/MS after incubation of RLMs with vonoprazan and gradient concentrations of poziotinib. For the in vivo experiment, rats in the poziotinib treated group were given 5 mg/kg poziotinib by gavage once daily for 7 days, and the control group was only given 0.5% CMC-Na. On Day 8, tail venous blood was collected at different time points after the gavage administration of 10 mg/kg vonoprazan, and used for the quantification of vonoprazan and its metabolite. DAS and SPSS software were used for the pharmacokinetic and statistical analyses. RESULTS: In vitro experimental data indicated that poziotinib inhibited the metabolism of vonoprazan (IC50 = 10.6 µM) in a mixed model of noncompetitive and uncompetitive inhibition. The inhibitory constant Ki was 0.574 µM and the binding constant αKi was 2.77 µM. In vivo experiments revealed that the AUC(0-T) (15.05 vs. 90.95 µg/mL·h) and AUC(0-∞) (15.05 vs. 91.99 µg/mL·h) of vonoprazan increased significantly with poziotinib pretreatment. The MRT(0-∞) of vonoprazan increased from 2.29 to 5.51 h, while the CLz/F value decreased from 162.67 to 25.84 L/kg·h after pretreatment with poziotinib. CONCLUSIONS: Poziotinib could significantly inhibit the metabolism of vonoprazan and more care may be taken when co-administered in the clinic.
Assuntos
Microssomos Hepáticos , Espectrometria de Massas em Tandem , Ratos , Animais , Cromatografia Líquida , Interações Medicamentosas , Microssomos Hepáticos/metabolismoRESUMO
While schwannoma is one of the most common types of benign peripheral nerve tumors in adults, a very unique and specific variant of schwannoma, the intravascular variant, is exceedingly rare. There have only been three previously published cases of intravascular schwannomas. Here we describe a fourth case of an intravascular schwannoma in a 47-year-old man with an enlarging subcutaneous nodule on his posterior calf. This is the second case of an intravascular schwannoma contained within a vein. Also included is an overview of intravascular schwannomas, including a description and discussion of the histopathological diagnosis, differential diagnoses, and schwannoma variants.
Assuntos
Neurilemoma/diagnóstico , Neoplasias Cutâneas/diagnóstico , Neoplasias Vasculares/diagnóstico , Diagnóstico Diferencial , Humanos , Masculino , Pessoa de Meia-Idade , Neurilemoma/metabolismo , Neurilemoma/patologia , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Neoplasias Vasculares/metabolismo , Neoplasias Vasculares/patologia , Veias/metabolismo , Veias/patologiaRESUMO
Reactive oxygen species formed within the mammalian cell can produce 8-oxo-7,8-dihydroguanine (8-oxoG) in mRNA, which can cause base mispairing during gene expression. Here we found that administration of 8-oxoGTP in MTH1-knockdown cells results in increased 8-oxoG content in mRNA. Under this condition, an amber mutation of the reporter luciferase is suppressed. Using second-generation sequencing techniques, we found that U-to-G changes at preassigned sites of the luciferase transcript increased when 8-oxoGTP was supplied. In addition, an increased level of 8-oxoG content in RNA induced the accumulation of aggregable amyloid ß peptides in cells expressing amyloid precursor protein. Our findings indicate that 8-oxoG accumulation in mRNA can alter protein synthesis in mammalian cells. Further work is required to assess the significance of these findings under normal physiological conditions.
Assuntos
Guanina/análogos & derivados , Mutagênese/genética , Biossíntese de Proteínas/genética , Transcrição Gênica/genética , Peptídeos beta-Amiloides/genética , Anticódon/genética , Pareamento de Bases , Códon sem Sentido , Enzimas Reparadoras do DNA/antagonistas & inibidores , Enzimas Reparadoras do DNA/genética , Técnicas de Silenciamento de Genes , Genes Reporter , Guanina/química , Células HeLa , Humanos , Luciferases/genética , Monoéster Fosfórico Hidrolases/antagonistas & inibidores , Monoéster Fosfórico Hidrolases/genética , Interferência de RNA , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Espécies Reativas de OxigênioRESUMO
Cabozantinib is a multityrosine kinase inhibitor and has a wide range of applications in the clinic, whose metabolism is predominately dependent on CYP3A4. This study was performed to characterize the enzymatic properties of 29 CYP3A4 alleles toward cabozantinib and the functional changes of five selected alleles (the wild-type, CYP3A4.2.8.14 and .15) toward cabozantinib in the presence of ketoconazole. Cabozantinib, 1-100 µM, with/without the presence of ketoconazole and CYP3A4 enzymes in the incubation system went through 30 min incubation at 37 °C, and the concentrations of cabozantinib N-oxide were quantified by UPLC-MS/MS to calculate the corresponding kinetic parameters of each variant. Collectively, without the presence of ketoconazole, most variants displayed defective enzymatic activities in different degrees, and only CYP3A4.14 and .15 showed significantly augmented enzymatic activities. With the presence of ketoconazole, five tested CYP3A4 alleles, even CYP3A4.14 and .15, exhibited obvious reductions in intrinsic clearance. Besides, we compared cabozantinib with regorafenib in relative clearance to confirm that CYP3A4 has the property of substrate specificity. As the first study of CYP3A4 genetic polymorphisms toward cabozantinib, our observations can provide prediction of an individual's capability in response to cabozantinib and guidance for medication and treatment of cabozantinib.
Assuntos
Anilidas/metabolismo , Citocromo P-450 CYP3A/metabolismo , Inibidores de Proteínas Quinases/metabolismo , Piridinas/metabolismo , Alelos , Citocromo P-450 CYP3A/genética , Variação Genética/genética , Humanos , Cetoconazol/metabolismo , Cinética , Fígado/enzimologiaRESUMO
1. Cytochrome P450 3A4 (CYP3A4) is an important member of the cytochrome P450 enzyme superfamily, with 33 allelic variants reported previously. Genetic polymorphisms of CYP3A4 can produce a significant effect on the efficacy and safety of some drugs, so the purpose of this study was to clarify the catalytic characteristics of 22 CYP3A4 allelic isoforms, including 6 novel variants in Han Chinese population, on the oxidative metabolism of amiodarone in vitro. 2. Wild-type CYP3A4*1 and other variants expressed by insect cells system were incubated respectively with 10-500 µM substrate for 40 min at 37 °C and terminated at -80 °C immediately. Then these samples were treated as required and detected with ultra-performance liquid chromatography-tandem mass spectrometry used to analyze its major metabolite desethylamiodarone. 3. Among the 21 CYP3A4 variants, compared with the wild-type, the intrinsic clearance values (Vmax/Km) of two variants were apparently decreased (11.07 and 2.67% relative clearance) while twelve variants revealed markedly increased values (155.20â¼435.96%), and the remaining of seven variants exhibited no significant changes in enzyme activity. 4. This is the first time report describing all these infrequent alleles for amiodarone metabolism, which can provide fundamental data for further clinical studies on CYP3A4 alleles.
Assuntos
Amiodarona/metabolismo , Inibidores do Citocromo P-450 CYP3A/metabolismo , Povo Asiático , Citocromo P-450 CYP3A/metabolismo , Humanos , Polimorfismo GenéticoRESUMO
OBJECTIVE: To investigate the impact of resveratrol on the metabolism of ibrutinib in vitro and in vivo. METHODS: In vitro, rat liver microsomes (RLM) and human liver microsomes (HLM) were used to study. In vivo, 18 male SD rats were randomly divided into three groups (n = 6): ibrutinib and the multiple dose of 100 mg/kg resveratrol for consecutive 7 days (Group A), ibrutinib and the single dose of 100 mg/kg resveratrol (Group B), ibrutinib (Group C). Processed samples were analyzed by UPLC-MS/MS. RESULTS: Resveratrol showed inhibition on RLM and HLM in vitro. The IC50 of resveratrol was 8.745 µM in RLM and 7.789 µM in HLM. Furthermore, Groups A and B both increased the AUC and reduced the CLz/F. The Cmax of Group A and the MRT(0-t) of Group B were significantly improved. CONCLUSIONS: Resveratrol inhibits the pharmacokinetic of ibrutinib in vitro and in vivo. It is necessary to pay more attention to adjust the dose of the drug when resveratrol is used in combination with ibrutinib.
Assuntos
Antioxidantes/farmacocinética , Pirazóis/farmacocinética , Pirimidinas/farmacocinética , Resveratrol/farmacocinética , Espectrometria de Massas em Tandem/métodos , Adenina/análogos & derivados , Animais , Antioxidantes/análise , Cromatografia Líquida de Alta Pressão/métodos , Relação Dose-Resposta a Droga , Interações Medicamentosas/fisiologia , Humanos , Masculino , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Piperidinas , Pirazóis/análise , Pirimidinas/análise , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Resveratrol/análiseRESUMO
Recent studies have shown that KIF5B (conventional kinesin heavy chain) mediates glucose transporter type 4 translocation and adiponectin secretion in 3T3-L1 adipocytes, suggesting an involvement of KIF5B in the homeostasis of metabolism. However, the in vivo physiologic function of KIF5B in adipose tissue remains to be determined. In this study, adipose-specific Kif5b knockout (F-K5bKO) mice were generated using the Cre-LoxP strategy. F-K5bKO mice had similar body weights to controls fed on a standard chow diet. However, F-K5bKO mice had hyperlipidemia and significant glucose intolerance and insulin resistance. Deletion of Kif5b aggravated the deleterious impact of a high-fat diet (HFD) on body weight gain, hepatosteatosis, glucose tolerance, and systematic insulin sensitivity. These changes were accompanied by impaired insulin signaling, decreased secretion of adiponectin, and increased serum levels of leptin and proinflammatory adipokines. F-K5bKO mice fed on an HFD exhibited lower energy expenditure and thermogenic dysfunction as a result of whitening of brown adipose due to decreased mitochondria biogenesis and down-regulation of key thermogenic gene expression. In conclusion, selective deletion of Kif5b in adipose tissue exacerbates HFD-induced obesity and its associated metabolic disorders, partly through a decrease in energy expenditure, dysregulation of adipokine secretion, and insulin signaling.-Cui, J., Pang, J., Lin, Y.-J., Gong, H., Wang, Z.-H., Li, Y.-X., Li, J., Wang, Z., Jiang, P., Dai, D.-P., Li, J., Cai, J.-P., Huang, J.-D., Zhang, T.-M. Adipose-specific deletion of Kif5b exacerbates obesity and insulin resistance in a mouse model of diet-induced obesity.
Assuntos
Tecido Adiposo/metabolismo , Dieta Hiperlipídica/efeitos adversos , Resistência à Insulina/fisiologia , Cinesinas/metabolismo , Obesidade/induzido quimicamente , Animais , Intolerância à Glucose , Resistência à Insulina/genética , Cinesinas/genética , Masculino , Camundongos , Camundongos KnockoutRESUMO
BACKGROUND: Cytochrome P450 proteins (CYP 450) is the most important enzyme system of drug phase I metabolism in liver. In previous reports, reduced efficiency or increased risk of adverse events can be affected by primary sequence mutation in CYP450. AIM: To investigate the effect of gene polymorphism on the metabolism of ketamine in vitro, including the new alleles: 2C9*58, *59 and *60. METHOD: Incubation system which was contained insect microsome, b5, NADPH and 1M PBS incubated 10 µM-1000 µM ketamine in 37 °C for 40 min concentration of norketamine was analyzed by ultra-performance liquid chromatography-tandem mass spectrometry system (UPLC-MS/MS). RESULT: Catalytic activity of thirty-eight CYP2C9 alleles on ketamine metabolism to norketamine was surveyed. Compared with 2C9*1, three alleles (2C9*40, *49 and *51) was demonstrated dramatically increased intrinsic clearance (1.2-fold-3.75-fold); four subtypes (2C9*27, *31, *41 and *56) exhibited no significantly change on enzyme activity. The resting 31 alleles expressed different degrees of reduction compared with wild type. CONCLUSION: The result of research warns that attention should be more paid on individual who carry on the special 2C9 alleles under the situation of administrating ketamine.
Assuntos
Citocromo P-450 CYP2C9/genética , Citocromo P-450 CYP2C9/fisiologia , Ketamina/metabolismo , Variantes Farmacogenômicos/genética , Variantes Farmacogenômicos/fisiologia , Polimorfismo Genético/genética , Polimorfismo Genético/fisiologia , Animais , Células Sf9RESUMO
AIMS: CYP2C19 is an important member of the cytochrome P450 enzyme superfamily. We recently identified 31 CYP2C19 alleles in the Han Chinese population. The aim of this study was to assess the catalytic activities of these allelic isoforms and their effects on the metabolism of fluoxetine in vitro. METHODS: The wild-type and 30 CYP2C19 variants were expressed in insect cells and each variant was characterized using fluoxetine as the substrate. Reactions were performed at 37°C with 20-1,000 µmol/L substrate for 30 min. By using ultra-high performance liquid chromatography-mass spectrometry to detect the products, the kinetic parameters Km, Vmax, and intrinsic clearance (Vmax/Km) of norfluoxetine were determined. RESULTS: Among the CYP2C19 variants tested, T130M showed similar intrinsic clearance (Vmax/Km) values with CYP2C19*1, while the intrinsic clearance values of other variants were significantly decreased (from 9.56 to 77.77%). In addition, CYP2C19*3 and *35FS could not be detected because they have no detectable enzyme activity. CONCLUSION: In China, the assessment of CYP2C19 variants in vitro offers valuable information relevant to the personalized medicine for CYP2C19-metabolized drug.
Assuntos
Citocromo P-450 CYP2C19/genética , Fluoxetina/farmacocinética , Inibidores Seletivos de Recaptação de Serotonina/farmacocinética , Alelos , Animais , Povo Asiático/genética , Cromatografia Líquida de Alta Pressão , Fluoxetina/análogos & derivados , Variação Genética , Humanos , Espectrometria de Massas , Células Sf9RESUMO
Insulin stimulates adiponectin secretion and glucose transporter type 4 (GLUT4) translocation in adipocyte to regulate metabolism homeostasis. Similar to GLUT4 translocation, intracellular trafficking and release of adiponectin in adipocytes relies on the trans-Golgi network and endosomal system. Recent studies show that the heavy chain of conventional kinesin (KIF5B) mediates GLUT4 translocation in murine 3T3-L1 adipocytes, however, the motor machinery involved in mediating intracellular trafficking and release of adiponectin is unknown. Here, we examined the role of KIF5B in the regulation of adiponectin secretion. The KIF5B level was up-regulated during 3T3-L1 adipogenesis. This increase in cytosolic KIF5B was synchronized with the induction of adiponectin. Endogenous KIF5B and adiponectin were partially colocalized at the peri-nuclear and cytosolic regions. In addition, adiponectin-containing vesicles were co-immunoprecipitated with KIF5B. Knockdown of KIF5B resulted in a marked inhibition of adiponectin secretion and overexpression of KIF5B enhanced adiponectin release, whereas leptin secretion was not affected by changes in KIF5B expression. These data suggest that the secretion of adiponectin, but not leptin, is dependent on functional KIF5B.
Assuntos
Adipócitos/metabolismo , Adiponectina/metabolismo , Cinesinas/metabolismo , Células 3T3-L1 , Transporte Ativo do Núcleo Celular , Adipócitos/citologia , Adipogenia/genética , Adipogenia/fisiologia , Adiponectina/genética , Animais , Diferenciação Celular , Técnicas de Silenciamento de Genes , Transportador de Glucose Tipo 4/metabolismo , Cinesinas/genética , Leptina/genética , Leptina/metabolismo , CamundongosRESUMO
Cytochrome P450 enzyme 2D6 (CYP2D6) is an important member of the cytochrome P450 enzyme superfamily, with more than 100 CYP2D6 allelic variants being previously reported. The aim of this study was to assess the catalytic characteristics of 25 alleles (CYP2D6.1 and 24 CYP2D6 variants) and their effects on the metabolism of propafenone in vitro. Twenty-five CYP2D6 alleles were expressing in 21 Spodoptera frugiperda (Sf) insect cells, and each variant was evaluated using propafenone as the substrate. Reactions were performed at 37 °C with 1-100 µmol/L propafenone for 30 min. After termination, the product 5-OH-propafenone was extracted and used for signal collection by ultra-performance liquid chromatography (UPLC). Compared with wild type CYP2D6.1, the intrinsic clearance (Vmax and Km) values of all variants were significantly altered. Three variants (CYP2D6.87, CYP2D6.90, CYP2D6.F219S) exhibited markedly increased intrinsic clearance values (129% to 165%), whereas 21 variants exhibited significantly decreased values (16% to 85%) due to increased Km and (or) decreased Vmax values. These results indicated that the majority of tested alleles had significantly altered catalytic activity towards propafenone hydroxylation in this expression system. Attention should be paid to subjects carrying these rare alleles when treated with propafenone.
Assuntos
Alelos , Antiarrítmicos/metabolismo , Povo Asiático/genética , Citocromo P-450 CYP2D6/genética , Variantes Farmacogenômicos/genética , Propafenona/metabolismo , Animais , Humanos , Insetos , Microssomos/metabolismoRESUMO
1. CYP2D6 is an important member of the cytochrome P450 (CYP450) enzyme superfamily, we recently identified 22 CYP2D6 alleles in the Han Chinese population. The aim of this study was to assess the catalytic activities of these allelic isoforms and their effects on the metabolism of venlafaxine in vitro. 2. The wild-type and 24 CYP2D6 variants were expressed in insect cells, and each variant was characterized using venlafaxine as the substrate. Reactions were performed at 37 °C with 5-500 µM substrate (three variants was adjusted to 1000 µM) for 50 min. By using high-performance liquid chromatography to detect the products, the kinetic parameters Km, Vmax, and intrinsic clearance (Vmax/Km) of O-desmethylvenlafaxine were determined. 3. Among the 22 CYP2D6 variants, the intrinsic clearance (Vmax/Km) values of all variants were significantly decreased (from 0.2% to 84.5%) compared with wild-type CYP2D6*1. In addition, the kinetic parameters of two CYP2D6 variants could not be detected because they have no detectable enzyme activity. 4. The comprehensive in vitro assessment of CYP2D6 variants provides significant insights into allele-specific activity towards venlafaxine in vivo.
Assuntos
Citocromo P-450 CYP2D6/genética , Variação Genética , Cloridrato de Venlafaxina/metabolismo , Alelos , Animais , Catálise , Células Cultivadas , China , Cromatografia Líquida de Alta Pressão , Succinato de Desvenlafaxina/química , Relação Dose-Resposta a Droga , Humanos , Insetos/citologia , Microssomos/enzimologia , Farmacogenética , Polimorfismo Genético , Isoformas de Proteínas , Temperatura , Cloridrato de Venlafaxina/administração & dosagemRESUMO
1. The objective of this study were to investigate the effect of orally administered resveratrol on the pharmacokinetics of aripiprazole (APZ) in rat, and the inhibitory effects of resveratrol on APZ dehydrogenation activity in liver microsomes and human cytochrome P450 3A4 and 2D6. 2. Twenty-five healthy male Sprague-Dawley rats were randomly divided into five groups: A (control group), B (multiple dose of 200 mg/kg resveratrol), C (multiple dose of 100 mg/kg resveratrol), D (a single dose of 200 mg/kg resveratrol) and E (a single dose of 100 mg/kg resveratrol). A single dose of 3 mg/kg APZ administered orally 30 min after administration of resveratrol. In addition, CYP2D6*1, CYP3A4*1, human and rat liver microsomes were performed to determine the effect of resveratrol on the metabolism of APZ in vitro. 3. The multiple dose of 200 or 100 mg/kg resveratrol significantly increased the AUC and Cmax of APZ. The resveratrol also obviously decreased the CL, but without any significant difference on t1/2 in vivo. On the other hand, resveratrol showed inhibitory effect on CYP3A4*1, CYP2D6*1, human and rat microsomes, the IC50 of resveratrol was 6.771, 87.87, 45.11 and 35.59 µmol l(-1), respectively. 4. Those results indicated more attention should be paid when APZ was administrated combined with resveratrol.
Assuntos
Aripiprazol/farmacocinética , Citocromo P-450 CYP2D6/metabolismo , Citocromo P-450 CYP3A/metabolismo , Interações Medicamentosas , Microssomos Hepáticos/efeitos dos fármacos , Estilbenos/farmacocinética , Animais , Antipsicóticos/farmacocinética , Área Sob a Curva , Cromatografia Líquida , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacocinética , Humanos , Concentração Inibidora 50 , Masculino , Microssomos Hepáticos/metabolismo , Ratos , Ratos Sprague-Dawley , Resveratrol , Espectrometria de Massas em TandemRESUMO
The objective of this study was to assess the catalytic activity of 22 novel CYP2D6 allelic variants (2D6*87-*98, R25Q, F164L, E215K, F219S, V327M, D336N, V342M, R344Q, R440C and R497C) to olanzapine in vitro. Their protein products expressed in Spodoptera frugiperda 21 (Sf21) insect cells were incubated with olanzapine 100-2,000 µmol/l for 30 min. The kinetic parameters of Km, Vmax and intrinsic clearance were determined by 2-hydroxymethylolanzapine, the metabolite of olanzapine mediated by CYP2D6, using ultra-performance liquid chromatography tandem mass spectrometry. Results showed that the kinetic parameters of 2 alleles, CYP2D6*92 and 2D6*96, could not be detected; 17 allelic variants, CYP2D6*87-*88, 2D6*90-*91, 2D6*93-*95, 2D6*97, R25Q, F164L, E215K, F219S, V327M, V342M, R344Q, R440C and R497C, significantly reduced the intrinsic clearance of olanzapine; 2 variants, CYP2D6*89 and 2D6*98, increased the intrinsic clearance of olanzapine; no difference was found in intrinsic clearance of D336N. Furthermore, 6 alleles, CYP2D6*87, 2D6*88, 2D6*91, 2D6*93, 2D6*97 and R497C, exhibited higher Km values in a range of 120.80-217.56% relative to wild-type CYP2D6*1. The research demonstrated the metabolic phenotype of the 22 novel CYP2D6 variants for olanzapine that were different from probe drugs we used previously and might provide beneficial information to the personalized medicine of olanzapine.
Assuntos
Antipsicóticos/metabolismo , Povo Asiático/genética , Benzodiazepinas/metabolismo , Citocromo P-450 CYP2D6/genética , Variação Genética/genética , Vigilância da População , Relação Dose-Resposta a Droga , Humanos , Olanzapina , Polimorfismo Genético/genética , Vigilância da População/métodosRESUMO
The study of antigenic epitopes from Toxoplasma gondii has not only enhanced our understanding of the structure and function of antigens, the reactions between antigens and antibodies, and many other aspects of immunology, but it also plays a significant role in the development of new diagnostic reagents and vaccines. In the present study, T. gondii GRA6 epitopes were identified using bioinformatics tools and a synthetic peptide technique. The potential B cell epitopes of GRA6 predicted by bioinformatics tools concentrated upon 3 regions of GRA6, 1-20 aa, 44-103 aa, and 172-221 aa. Ten shorter peptides from the 3 regions were synthesized and assessed by ELISA using pig sera from different time points after infection. Three of the 10 peptides (amino acids 44-63, 172-191, and 192-211) tested were recognized by all sera and determined to be immunodominant B-cell epitopes of GRA6. The results indicated that we precisely and accurately located the T. gondii GRA6 epitopes using pig sera collected at different time points after infection. The identified epitopes may be very useful for further studies of epitope-based vaccines and diagnostic reagents.