Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 263(Pt 2): 130373, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38395280

RESUMO

The integration of liquid metal (LM) and regenerated silk fibroin (RSF) hydrogel holds great potential for achieving effective antibacterial wound treatment through the LM photothermal effect. However, the challenge of LM's uncontrollable shape-deformability hinders its stable application. To address this, we propose a straightforward and environmentally-friendly ice-bath ultrasonic treatment method to fabricate stable RSF-coated eutectic gallium indium (EGaIn) nanoparticles (RSF@EGaIn NPs). Additionally, a double-crosslinked hydrogel (RSF-P-EGaIn) is prepared by incorporating poly N-isopropyl acrylamide (PNIPAAm) and RSF@EGaIn NPs, leading to improved mechanical properties and temperature sensitivity. Our findings reveal that RSF@EGaIn NPs exhibit excellent stability, and the use of near-infrared (NIR) irradiation enhances the antibacterial behavior of RSF-P-EGaIn hydrogel in vivo. In fact, in vivo testing demonstrates that wounds treated with RSF-P-EGaIn hydrogel under NIR irradiation completely healed within 14 days post-trauma infection, with the formation of new skin and hair. Histological examination further indicates that RSF-P-EGaIn hydrogel promoted epithelialization and well-organized collagen deposition in the dermis. These promising results lay a solid foundation for the future development of drug release systems based on photothermal-responsive hydrogels utilizing RSF-P-EGaIn.


Assuntos
Anti-Infecciosos , Fibroínas , Nanopartículas Metálicas , Hidrogéis/farmacologia , Antibacterianos/farmacologia
2.
ACS Appl Mater Interfaces ; 15(6): 7673-7685, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36735224

RESUMO

Peptides can introduce new functions to biomaterials but their immobilization usually relies on inefficient physical adsorption or tedious chemical conjugation. Using the Bombyx mori silk fibroin (SF) membrane (SFm) as a model biomaterial, here, we demonstrate a universal strategy for discovering new peptides that can "stick" to a biomaterial to functionalize it. Specifically, two peptide motifs, one screened by phage display biopanning for binding to the biomaterial (i.e., SF) and another derived from an osteogenic growth factor (i.e., bone morphogenetic protein-2), are fused into a new chimeric peptide that can bind to SFm for more efficient osteogenesis. Theoretical simulations and experimental assays confirm that the chimeric peptide binds to SF with high affinity, facilely achieving its immobilization onto SFm. The peptide enables SFm to effectively induce osteogenic differentiation of human mesenchymal stem cells (MSCs) even without other osteogenic inducers and efficiently stimulate bone regeneration in a subcutaneous rat model in 8 weeks, even without MSC seeding, while not causing inflammatory responses. Since biomaterial-binding peptides can be readily screened using phage display and functional peptides can be generated from growth factors, our work suggests a universal strategy for combining them to seek new peptides for binding and functionalizing biomaterials.


Assuntos
Fibroínas , Células-Tronco Mesenquimais , Humanos , Ratos , Animais , Osteogênese , Materiais Biocompatíveis/farmacologia , Fibroínas/farmacologia , Peptídeos/farmacologia , Diferenciação Celular , Seda/farmacologia , Alicerces Teciduais
3.
ACS Appl Mater Interfaces ; 14(38): 42950-42962, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36112417

RESUMO

Synthetic or natural materials have been used as vaccines in cancer immunotherapy. However, using them as vaccines necessitates multiple injections or surgical implantations. To tackle such daunting challenges, we develop an injectable macroporous Bombyx mori (B. mori) silk fibroin (SF) microsphere loaded with antigens and immune adjuvants to suppress established tumors with only a single injection. SF microspheres can serve as a scaffold by injection and avoid surgical injury as seen in traditional scaffold vaccines. The macroporous structure of the vaccine facilitates the recruitment of immune cells and promotes the activation of dendritic cells (DCs), resulting in a favorable immune microenvironment that further induces strong humoral and cellular immunity. We have also modified the vaccine into a booster version by simply allowing the antigens to be adsorbed onto the SF microspheres. The booster vaccine highly efficiently suppresses tumor growth by improving the cytotoxic T lymphocyte (CTL) response. In general, these results demonstrate that the macroporous SF microspheres can serve as a facile platform for tumor vaccine therapy in the future. Since the SF microspheres are also potential scaffolds for tissue regeneration, their use as a vaccine platform will enable their applications in eradicating tumors while regenerating healthy tissue to heal the tumor-site cavity.


Assuntos
Bombyx , Fibroínas , Adjuvantes Imunológicos , Adjuvantes Farmacêuticos , Animais , Fibroínas/química , Imunoterapia , Microesferas , Seda/química
4.
J Mater Chem B ; 9(47): 9764-9769, 2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34806096

RESUMO

Although silk proteins are considered promising in building a scaffold for tissue engineering, one of the silk proteins, Bombyx mori silk sericin (BS), has limited processability in producing nanofibrous scaffolds because its surface charge anisotropy promotes gelation instead. To overcome this daunting challenge, we developed a mild and simple procedure for assembling BS into nanofibers and nanofibrous scaffolds. Briefly, arginine was added to the aqueous BS solution to reduce the negative charge of BS, thereby inducing BS to self-assemble into nanofibers in the solution. Circular dichroism (CD) and Fourier transform infrared (FT-IR) spectra showed that arginine promoted the formation of ß-sheet conformation in BS and increased its thermal stability. Furthermore, the arginine-induced BS nanofiber solution could be casted into scaffolds made of abundant network-like nanofibrous structures. The BS scaffolds promoted cell adhesion and growth and stimulated osteogenic differentiation of the bone marrow mesenchymal stem cells (BMSCs) in the absence of differentiation inducers in culture media. Our study presents a new strategy for assembling proteins into osteogenic nanofibrous scaffolds for inducing stem cell differentiation in regenerative medicine.


Assuntos
Arginina/química , Diferenciação Celular/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Nanofibras/química , Sericinas/farmacologia , Alicerces Teciduais/química , Animais , Bombyx/química , Membranas Artificiais , Conformação Proteica em Folha beta/efeitos dos fármacos , Multimerização Proteica/efeitos dos fármacos , Sericinas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA