Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Chemistry ; 29(25): e202300021, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-36748928

RESUMO

Apatite-type lanthanum silicate (LSO) electrolyte is one of the most promising candidates for developing intermediate-temperature solid oxide electrolysis cells and solid oxide full cells (IT-SOECs and SOFCs) due to its stability and low activation energy. However, the LSO electrolyte still suffers from unsatisfied ionic conductivity and low relative density. Herein, a new co-doped method is reported to prepare highly purified polycrystalline powders of Mg-Mo co-doped LSO (Mg/Mo-LSO) electrolytes with high excellent densification properties and improved ionic conductivity. Introducing the Mo6+ and Mg2+ ions into the LSO structure can increase the number of interstitial oxide ions and improve the degree of densification at lower sintering temperatures, more importantly, expand the migration channel of oxide ions to enhance the ionic conductivity. As a result, the relative density of the fabricated Mo/Mg-LSO electrolytes pellets could achieve more than 98 % of the theoretical density after sintering at 1500 °C for 4 h with a grain size of about 1-3 µm and the EIS results showed the ionic conductivity increased from 0.782 mS ⋅ cm-1 for the pristine LSO to 33.94 mS ⋅ cm-1 for the doped sample La9.5 Si5.45 Mg0.3 Mo0.25 O26+δ at 800 °C. In addition, the effect of different Mo6+ doping contents was investigated systematically, in which La9.5 Si5.45 Mg0.3 Mo0.25 O26+δ possessed the highest ionic conductivity and relative density. The proposed Mo/Mg co-doped method in this work is one step forward in developing apatite-structured electrolytes offering excellent potential to address the common issues associated with the fabrication of dense, highly conductive, and thermochemically stable electrolytes for solid oxide electrolysers and fuel cells.

2.
Cerebellum ; 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37943429

RESUMO

Spinocerebellar ataxia (SCA) patients' reports of their own experiences are essential to the outcome evaluation in clinical trials. To better understand the health condition and well-being of ataxia population, Patient-Reported Outcome Measure of Ataxia (PROM-Ataxia) was developed. The aim of our study was to culturally adapt the PROM-Ataxia into Chinese version and assess its correlation with canonical clinical assessments. We translated the PROM-Ataxia into Chinese following the ISPOR TCA Task Force guidelines and evaluated its correlation with measures of motor ataxia, non-ataxia signs, quality of life, and mental health in 92 Chinese SCA participants. Nearly all the participants found this questionnaire complete and intelligible but some items were found repetitive or ambiguous. The total score of PROM-Ataxia from stage 0 to stage 3 was 23.24 ± 18.53, 79.11 ± 40.45, 144.30 ± 41.30, and 176.20 ± 31.74, respectively (p < 0.0001). It was strongly correlated with the Scale for the Assessment and Rating of Ataxia (SARA) (r = 0.832, p < 0.0001). Physical and activities domain of PROM-Ataxia were correlated with measures of motor ataxia, quality of life, and psychological health while mental health domain was correlated with all the clinical assessments including inventory of non-ataxia signs and cognitive assessment. We translated the PROM-Ataxia into Chinese for the first time, which allows transnational comparability in future studies. Our study validated the responsiveness of PROM-Ataxia to established clinical measures in Chinese SCA patients and implied its potential to evaluate the therapeutic effect and optimize the sensitivity of changes in clinical outcome assessments.

3.
Int J Cosmet Sci ; 45(4): 426-443, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36896776

RESUMO

Sweating is the human body's thermoregulation system but also results in unpleasant body odour which can diminish the self-confidence of people. There has been continued research in finding solutions to reduce both sweating and body odour. Sweating is a result of increased sweat flow and malodour results from certain bacteria and ecological factors such as eating habits. Research on deodorant development focuses on inhibiting the growth of malodour-forming bacteria using antimicrobial agents, whereas research on antiperspirant synthesis focuses on technologies reducing the sweat flow, which not only reduces body odour but also improves people's appearance. Antiperspirant's technology is based on the use of aluminium salts which can form a gel plug at sweat pores, obstructing the sweat fluid from arising onto the skin surface. In this paper, we perform a systematic review on the recent progress in the development of novel antiperspirant and deodorant active ingredients that are alcohol-free, paraben-free, and naturally derived. Several studies have been reported on the alternative class of actives that can potentially be used for antiperspirant and body odour treatment including deodorizing fabric, bacterial, and plant extracts. However, a significant challenge is to understand how the gel-plugs of antiperspirant actives are formed in sweat pores and how to deliver long-lasting antiperspirant and deodorant benefits.


La transpiration est le système de thermorégulation de l'organisme, mais elle entraîne également une odeur corporelle désagréable qui peut diminuer la confiance en soi. Des nombreuses recherches ont été menées afin de trouver des solutions pour réduire à la fois la transpiration et l'odeur corporelle. La transpiration est le résultat de l'augmentation du flux de sueur, et les mauvaises odeurs sont dues à certaines bactéries et à certains facteurs écologiques tels que les habitudes alimentaires. Les recherches sur le développement des déodorants se concentrent sur l'inhibition de la croissance des bactéries responsables des mauvaises odeurs à l'aide d'agents antimicrobiens, tandis que les recherches sur la synthèse des anti-transpirants se concentrent sur les technologies diminuant le flux de sueur, ce qui réduire non seulement les odeurs corporelles, mais améliore également l'apparence des personnes. La technologie des anti-transpirants repose sur l'utilisation de sels d'aluminium qui peuvent former un bouchon de gel au niveau des pores sudoripares, empêchant le liquide sudoral d'apparaître à la surface de la peau. Dans cet article, nous effectuons une revue systématique des progrès récents réalisés dans le développement de nouveaux principes actifs anti-transpirants et déodorants qui sont sans alcool, sans parabène et d'origine naturelle. Plusieurs études ont été rapportées sur la classe alternative de principes actifs qui peuvent potentiellement être utilisés pour le traitement anti-transpirant et des odeurs corporelles, y compris les tissus désodorisants, les bactéries et les extraits végétaux. Cependant, un défi important consiste à comprendre comment les bouchons de gel des actifs anti-transpirants se forment au niveau des pores sudoripares, et comment offrir des effets anti-transpirants et déodorants durables.


Assuntos
Antiperspirantes , Desodorantes , Humanos , Antiperspirantes/farmacologia , Desodorantes/farmacologia , Odor Corporal , Sudorese , Glândulas Sudoríparas
4.
Zhongguo Zhong Yao Za Zhi ; 48(1): 140-147, 2023 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-36725266

RESUMO

This study used the zebrafish model to explore the hepatotoxicity of Rhododendri Mollis Flos(RMF). The mortality was calculated according to the number of the survival of zebrafish larvae 4 days after fertilization under different concentration of RMF, and the dose-toxicity curve was fitted to preliminarily evaluate the toxicity of RMF. The liver phenotypes under the sublethal concentration of RMF in the treatment group and the blank control group were observed by hematoxylin-eosin(HE) staining and acridine orange(AO) staining. Meanwhile, the activities of alanine aminotransferase(ALT) and aspartate aminotransferase(AST) were determined to confirm the hepatotoxicity of RMF. Real-time quantitative polymerase chain reaction(real-time PCR) and Western blot were used to determine the expressions of genes and proteins in zebrafish larvae. Gas chromatography time-of-flight mass spectrometry(GC-TOF-MS) was used to conduct untargeted metabolomics testing to explore the mechanism. The results showed that the toxicity of RMF to zebrafish larvae was dose-dependent, with 1 100 µg·mL~(-1) of the absolute lethal concentration and 448 µg·mL~(-1) of sublethal concentration. The hepatocyte apoptosis and degeneration appeared in the zebrafish larvae under the sublethal concentration of RMF. The content of ALT and AST in zebrafish larvae at the end of the experiment was significantly increased in a dose-dependent manner. Under the sublethal concentration, the expressions of genes and proteins related to apoptosis in zebrafish larvae were significantly increased as compared with the blank control group. The results of untargeted metabolomics showed that the important metabolites related to the he-patotoxicity of RMF were mainly enriched in alanine, aspartic acid, glutamic acid, and other pathways. In conclusion, it is inferred that RMF has certain hepatotoxicity to zebrafish larvae, and its mechanism may be related to apoptosis.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Peixe-Zebra , Animais , Peixe-Zebra/genética , Apoptose , Larva
5.
Angew Chem Int Ed Engl ; 62(5): e202213806, 2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36456529

RESUMO

The application of Li-rich layered oxides is hindered by their dramatic capacity and voltage decay on cycling. This work comprehensively studies the mechanistic behaviour of cobalt-free Li1.2 Ni0.2 Mn0.6 O2 and demonstrates the positive impact of two-phase Ru doping. A mechanistic transition from the monoclinic to the hexagonal behaviour is found for the structural evolution of Li1.2 Ni0.2 Mn0.6 O2, and the improvement mechanism of Ru doping is understood using the combination of in operando and post-mortem synchrotron analyses. The two-phase Ru doping improves the structural reversibility in the first cycle and restrains structural degradation during cycling by stabilizing oxygen (O2- ) redox and reducing Mn reduction, thus enabling high structural stability, an extraordinarily stable voltage (decay rate <0.45 mV per cycle), and a high capacity-retention rate during long-term cycling. The understanding of the structure-function relationship of Li1.2 Ni0.2 Mn0.6 O2 sheds light on the selective doping strategy and rational materials design for better-performance Li-rich layered oxides.

6.
Small ; 18(23): e2108124, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35434905

RESUMO

Solid-state electrolytes (SSEs) have been thrust into the limelight for the revival of energy-dense lithium metal batteries, but still face the challenge of failure caused by the dendrite penetration. Mounting evidence indicates that dendrite penetration is related to the mechanical failure in SSEs, which calls for mechanical engineering to tackle this problem. This work reports a proof of concept that ion implantation induced surface compressive stress enables resistance in the dendrite penetration. A deterministic sequential multiple ion energies implantation is used to generate compressive stress, with implanted Xe ions distributed in a range of 160-600 Å from the surface. The symmetric lithium cells show that pellets with an implantation dose of 1013 Xe cm-2 exhibit stable stripping/plating cycles and extended lifespan, while a lower dose of 1012 Xe cm-2 cannot create sufficient stress to prevent dendrite penetration, and an excessive dose of 1014 Xe cm-2 leads to structural destruction and a decrease in stress. This improved performance is attributed to the induced surface compressive stress balanced over crystal grains, which is confirmed by grazing incidence diffraction techniques. The author's efforts demonstrate the usefulness of surface compressive stress to suppress dendrite penetration, offering more insight into rational stress-strain engineering as opposed to empirical optimization.


Assuntos
Lítio , Xenônio , Dendritos , Eletrólitos , Íons
7.
Small ; 18(43): e2200177, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36026547

RESUMO

Hard carbon (HC) anodes together with ethylene carbonate (EC)-based electrolytes have shown significant promise for high-performing sodium-ion batteries. However, questions remain in relation to the initial contact between the carbon surface and the EC molecules. The surface of the HC anode is complex and can contain both flat pristine carbon surfaces, curvature, nanoscale roughness, and heteroatom defects. Combining density functional theory and experiments, the effect of different carbon surface motifs and defects on EC adsorption are probed, concluding that EC itself does not block any sodium storage sites. Nevertheless, the EC breakdown products do show strong adsorption on the same carbon surface motifs, indicating that the carbon surface defect sites can become occupied by the EC breakdown products, leading to competition between the sodium and EC fragments. Furthermore, it is shown that the EC fragments can react with a carbon vacancy or oxygen defect to give rise to CO2 formation and further oxygen functionalization of the carbon surface. Experimental characterization of two HC materials with different microstructure and defect concentrations further confirms that a significant concentration of oxygen-containing defects and disorder leads to a thicker solid electrolyte interphase, highlighting the significant effect of atomic-scale carbon structure on EC interaction.

8.
Int J Mol Sci ; 23(24)2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36555250

RESUMO

The main challenge in lithium sulphur (Li-S) batteries is the shuttling of lithium polysulphides (LiPSs) caused by the rapid LiPSs migration to the anode and the slow reaction kinetics in the chain of LiPSs conversion. In this study, we explore 1T-MoS2 as a cathode host for Li-S batteries by examining the affinity of 1T-MoS2 substrates (pristine 1T-MoS2, defected 1T-MoS2 with one and two S vacancies) toward LiPSs and their electrocatalytic effects. Density functional theory (DFT) simulations are used to determine the adsorption energy of LiPSs to these substrates, the Gibbs free energy profiles for the reaction chain, and the preferred pathways and activation energies for the slow reaction stage from Li2S4 to Li2S. The obtained information highlights the potential benefit of a combination of 1T-MoS2 regions, without or with one and two sulphur vacancies, for an improved Li-S battery performance. The recommendation is implemented in a Li-S battery with areas of pristine 1T-MoS2 and some proportion of one and two S vacancies, exhibiting a capacity of 1190 mAh/g at 0.1C, with 97% capacity retention after 60 cycles in a schedule of different C-rates from 0.1C to 2C and back to 0.1C.


Assuntos
Lítio , Molibdênio , Adsorção , Eletrodos , Enxofre
9.
Angew Chem Int Ed Engl ; 61(27): e202201969, 2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-35467801

RESUMO

Oxides composed of an oxygen framework and interstitial cations are promising cathode materials for lithium-ion batteries. However, the instability of the oxygen framework under harsh operating conditions results in fast battery capacity decay, due to the weak orbital interactions between cations and oxygen (mainly 3d-2p interaction). Here, a robust and endurable oxygen framework is created by introducing strong 4s-2p orbital hybridization into the structure using LiNi0.5 Mn1.5 O4 oxide as an example. The modified oxide delivers extraordinarily stable battery performance, achieving 71.4 % capacity retention after 2000 cycles at 1 C. This work shows that an orbital-level understanding can be leveraged to engineer high structural stability of the anion oxygen framework of oxides. Moreover, the similarity of the oxygen lattice between oxide electrodes makes this approach extendable to other electrodes, with orbital-focused engineering a new avenue for the fundamental modification of battery materials.

10.
Small ; 17(18): e2007652, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33734590

RESUMO

Hard carbon anodes have shown significant promise for next-generation battery technologies. These nanoporous carbon materials are highly complex and vary in structure depending on synthesis method, precursors, and pyrolysis temperature. Structurally, hard carbons are shown to consist of disordered planar and curved motifs, which have a dramatic impact on anode performance. Here, the impact of position on defect formation energy is explored through density functional theory simulations, employing a mixed planar bulk and curved surface model. At defect sites close to the surface, a dramatic decrease ( ≥ 50%) in defect formation energy is observed for all defects except the nitrogen substitutional defect. These results confirm the experimentally observed enhanced defect concentration at surfaces. Previous studies have shown that defects have a marked impact on metal storage. This work explores the interplay between position and defect type for lithium, sodium, and potassium adsorption. Regardless of defect location, it is found that the energetic contributions to the metal adsorption energies are principally dictated by the defect type and carbon interlayer distance.

11.
J Chem Inf Model ; 61(7): 3376-3385, 2021 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-34161083

RESUMO

Liquid-liquid extraction (LLE) is an important technique to separate aromatics from aliphatics since these compounds have very similar boiling points and cannot be separated by distillation. Ionic liquids (ILs) are considered as potential extractants to extract aromatics from aliphatics. In this paper, molecular dynamics (MD) simulations were used to predict the extraction property (i.e., capacity and selectivity) of ILs for the LLE of aromatics from aliphatics. The extraction properties of seven different ILs including [C2mim][Tf2N], [C2mim][TFO], [C2mim][SCN], [C2mim][DCA], [C2mim][TCM], [C4mim][Tf2N], and [C8mim][Tf2N] were investigated. Results show that ILs with shorter alkyl chain cations and [Tf2N]- anion exhibit better extraction efficiency than other ILs, which is in agreement with previously reported experimental data on the extraction of toluene from aliphatics and further validated the reliability of the proposed model. The binding energies between ILs and organic molecules were calculated by the density functional theory, which help explain the different extraction behaviors of different ILs. The symmetry-adapted perturbation theory analysis was performed to further understand the interaction mechanisms between ILs and organics. Our study shows that the [Tf2N]- anion also has the best extraction capability for heavier aromatics (o-xylene, m-xylene, and p-xylene) from common aliphatics (heptane and octane). The MD modeling approach can be a low-cost in silico tool for the high-throughput fast screening of ILs for the LLE of aromatics from aliphatics.


Assuntos
Líquidos Iônicos , Ânions , Extração Líquido-Líquido , Simulação de Dinâmica Molecular , Reprodutibilidade dos Testes
12.
Langmuir ; 35(33): 10855-10865, 2019 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-31335154

RESUMO

Multiphase complex fluids such as micelles, microemulsions, and dispersions are ubiquitous in product formulations of foods, pharmaceuticals, cosmetics, and fine chemicals. Quantifying how active solutes partition in the microstructure of such multiphase fluids is necessary for designing formulations that can optimally deliver the benefits of functional actives. In this paper, we at first predict the structure of a heptane/butanol/sodium dodecyl sulfate droplet in water that self-assembled to form a microemulsion through the molecular dynamics (MD) simulation and subsequently investigate the thermodynamic equilibrium of solute partitioning using COSMOmic. To our knowledge, this is the first time that the MD/COSMOmic approach is used for predicting solute partitioning in a microemulsion. The predicted partition coefficients are compared to experimental values derived from retention measurements of the same microemulsion. We show that the experimental data of droplet-water partition coefficients (Kdroplet/w) can be reliably predicted by the method that combines MD simulations with COSMOmic.

13.
Zhongguo Dang Dai Er Ke Za Zhi ; 21(5): 421-425, 2019 May.
Artigo em Chinês | MEDLINE | ID: mdl-31104655

RESUMO

OBJECTIVE: To study the incidence of acute attacks of asthma and dynamic changes in laboratory markers in children with well-controlled asthma after the withdrawal of low-dose inhaled corticosteroids (ICS), and to provide a basis for optimal long-term control regimens for children with asthma. METHODS: A total of 63 children with well-controlled asthma were enrolled as subjects. According to their parents' wishes, they were continuously administered with ICS (ICS treatment group; n=35) and without ICS (ICS withdrawal group; n=28). They were followed up for 18 months. The incidence of acute attacks of asthma was evaluated, dynamic monitoring was performed for pulmonary function and fractional exhaled nitric oxide (FeNO), and childhood asthma control test (C-ACT) was performed every three months. RESULTS: At 3, 6, 9, and 12 months of follow-up, there was no significant difference in FeNO between the ICS treatment and withdrawal groups (P>0.05). However, at 15 and 18 months of follow-up, the withdrawal group had a significantly higher level of FeNO than the ICS treatment group (P<0.05). There was no significant difference in the C-ACT score between the two groups at all time points of follow-up (P>0.05). At 3, 6, 9, and 12 months of follow-up, there were no significant differences between the two groups in the percentage of forced expiratory volume in 1 second, the ratio of forced expiratory volume in 1 second to forced vital capacity, percentage of predicted maximum mid-expiratory flow (MMEF%), and maximal expiratory flow at 50% of vital capacity (MEF50) (P>0.05), while at 15 and 18 months of follow-up, the ICS treatment group had significantly higher MMEF% and MEF50 than the withdrawal group (P<0.05). During follow-up, 3 children (9%) in the ICS treatment group and 8 (29%) in the withdrawal group experienced acute attacks of asthma (P=0.0495). CONCLUSIONS: Continuous inhalation of low-dose ICS can maintain the stability of pulmonary function and reduce acute attacks of asthma in children with well-controlled asthma.


Assuntos
Asma , Administração por Inalação , Corticosteroides , Antiasmáticos , Criança , Seguimentos , Volume Expiratório Forçado , Humanos , Óxido Nítrico
14.
Phys Chem Chem Phys ; 20(9): 6307-6315, 2018 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-29435523

RESUMO

In this study fully atomistic grand canonical Monte Carlo (GCMC) simulations have been employed to study the behaviour of an electrolyte salt (NaPF6) and different non-aqueous (organic) solvents in carbon nanopores, to reveal the structure and storage mechanism. Organic solutions of Na+ and PF6- ions at 1 M concentration were considered, based on the conditions in operational sodium ion batteries and supercapacitors. Three organic solvents with different properties were selected: ethylene carbonate (EC), propylene carbonate (PC), and ethyl methyl carbonate (EMC). The effects of solvents, pore size and surface charge were quantified by calculating the radial distribution functions and ionic density profiles. It is shown that the organic solvent properties and nanopore confinement can affect the structure of the organic electrolyte solution. For the pore size range (1-5 nm) investigated in this paper, the surface charge used in this study can alter the sodium ions but not the solvent structure inside the pore.

15.
J Plant Res ; 130(6): 1035-1045, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28653222

RESUMO

Nitrogen (N) and phosphorus (P) availabilities play crucial roles in plant morphogenesis and physiological processes, but how plant anatomical traits respond to the N and P supply is not well elucidated. We evaluated the effects of N and P supply on multiple leaf and stem anatomical traits of Arabidopsis thaliana. The addition of N increased the stem diameter, cortex thickness, rosette radius, midrib thickness, and size of leaf and stem vasculature significantly. Abaxial stomatal length (LSL) increased while adaxial epidermal cell density decreased significantly with increasing N supply. P addition did not affect stem size and leaf epidermal traits, but enhanced the thickness of stem xylem. The nutrient limiting status did not affect most traits except for LSL. The anatomical traits measured varied a lot in the extent of response to N and P addition, despite relatively stronger response to N addition overall. Cortex thickness, rosette radius, stomatal density and epidermal cell density exhibited relatively high plasticity to both nutrients, while stomatal length and stomatal index were relatively stable. Thus, these results suggested that the anatomical traits of shoot vasculature of A. thaliana were enhanced by both nutrients but more affected by N addition, satisfying the plant growth and nutrient requirements. Our findings may help shed light on plant adaptation to nutrient availability changes under the ongoing anthropogenic impacts, but the generality across numerous plant species still warrants further researches.


Assuntos
Arabidopsis/efeitos dos fármacos , Nitrogênio/farmacologia , Fósforo/farmacologia , Adaptação Fisiológica , Arabidopsis/anatomia & histologia , Arabidopsis/crescimento & desenvolvimento , Fenótipo , Folhas de Planta/anatomia & histologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Caules de Planta/anatomia & histologia , Caules de Planta/efeitos dos fármacos , Caules de Planta/crescimento & desenvolvimento , Xilema/anatomia & histologia , Xilema/efeitos dos fármacos , Xilema/crescimento & desenvolvimento
16.
Phys Chem Chem Phys ; 18(44): 30761-30769, 2016 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-27796383

RESUMO

Na ion batteries (NIBs) are considered as a promising low cost and sustainable energy storage technology. To better design nanoporous carbons as anode materials for NIBs, molecular dynamics simulations have been employed to study the behavior of Na+ ions (as well as PF6- ions) confined within carbon nanopores, in the presence of non-aqueous (organic) solvent. The effects of pore size and surface charge density were quantified by calculating ionic density profiles and concentration within the pores. Carbon slit pores of widths 0.72-10 nm were considered. The carbon surfaces were charged with densities of 0 (neutral pores), -0.8e nm-2, -1.2e nm-2, and -2e nm-2. Organic solutions of Na+ and PF6- at 1 M concentrations were considered under operating conditions of sodium ion batteries. As the surface charge density increases, more Na+ ions enter the pores. In all pores, when the surface is highly charged the Na+ ions move toward the negatively charged graphene surfaces because of counterion condensation effects. In some instances, our results reveal the formation of multiple layers of adsorbed Na+ inside the pores. Both the nanopore width and surface charge alter the density profiles of ions and solvent inside the pores.

17.
Energy Fuels ; 38(11): 10370-10380, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38863683

RESUMO

Green hydrogen from water electrolysis is a key driver for energy and industrial decarbonization. The prediction of the future green hydrogen cost reduction is required for investment and policy-making purposes but is complicated due to a lack of data, incomplete accounting for costs, and difficulty justifying trend predictions. A new AI-assisted data-driven prediction model is developed for an in-depth analysis of the current and future levelized costs of green hydrogen, driven by both progressive and disruptive innovations. The model uses natural language processing to gather data and generate trends for the technological development of key aspects of electrolyzer technology. Through an uncertainty analysis, green hydrogen costs have been shown to likely reach the key target of <$2.5 kg-1 by 2030 via progressive innovations, and beyond this point, disruptive technological developments are required to affect significantly further decease cost. Additionally, the global distribution of green hydrogen costs has been calculated. This work creates a comprehensive analysis of the levelized cost of green hydrogen, including the important balance of plant components, both now and as electrolyzer technology develops, and offers a likely prediction for how the costs will develop over time.

18.
Plant Divers ; 46(1): 49-58, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38343596

RESUMO

Beta-diversity reflects the spatial changes in community species composition which helps to understand how communities are assembled and biodiversity is formed and maintained. Larch (Larix) forests, which are coniferous forests widely distributed in the mountainous and plateau areas in North and Southwest China, are critical for maintaining the environmental conditions and species diversity. Few studies of larch forests have examined the beta-diversity and its constituent components (species turnover and nestedness-resultant components). Here, we used 483 larch forest plots to determine the total beta-diversity and its components in different life forms (i.e., tree, shrub, and herb) of larch forests in China and to evaluate the main drivers that underlie this beta-diversity. We found that total beta-diversity of larch forests was mainly dependent on the species turnover component. In all life forms, total beta-diversity and the species turnover component increased with increasing geographic, elevational, current climatic, and paleoclimatic distances. In contrast, the nestedness-resultant component decreased across these same distances. Geographic and environmental factors explained 20%-25% of total beta-diversity, 18%-27% of species turnover component, and 4%-16% of nestedness-resultant component. Larch forest types significantly affected total beta-diversity and species turnover component. Taken together, our results indicate that life forms affect beta-diversity patterns of larch forests in China, and that beta-diversity is driven by both niche differentiation and dispersal limitation. Our findings help to greatly understand the mechanisms of community assemblies of larch forests in China.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA