Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Langmuir ; 40(13): 6869-6877, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38498690

RESUMO

The capture of carbon dioxide (CO2) from fuel gases is a significant method to solve the global warming problem. Metal-organic frameworks (MOFs) are considered to be promising porous materials and have shown great potential for CO2 adsorption and separation applications. However, the adsorption and diffusion mechanisms of CO2 in functionalized MOFs from the perspective of binding energies are still not clear. Actually, the adsorption and diffusion mechanisms can be revealed more intuitively by the binding energies of CO2 with the functionalized MOFs. In this work, a combination of molecular dynamics simulation and density functional theory calculation was performed to study CO2 adsorption and diffusion mechanisms in five different functionalized isoreticular MOFs (IRMOF-1 through -5), considering the influence of functionalized linkers on the adsorption capacity of functionalized MOFs. The results show that the CO2 uptake is determined by two elements: the binding energy and porosity of MOFs. The porosity of the MOFs plays a dominant role in IRMOF-5, resulting in the lowest level of CO2 uptake. The potential of mean force (PMF) of CO2 is strongest at the CO2/functionalized MOFs interface, which is consistent with the maximum CO2 density distribution at the interface. IRMOF-3 with the functionalized linker -NH2 shows the highest CO2 uptake due to the higher porosity and binding energy. Although IRMOF-5 with the functionalized linker -OC5H11 exhibits the lowest diffusivity of CO2 and the highest binding energy, it shows the lowest CO2 uptake. Accordingly, among the five simulated functionalized MOFs, IRMOF-3 is an excellent CO2 adsorbent and IRMOF-5 can be used to separate CO2 from other gases, which will be helpful for the designing of CO2 capture devices. This work will contribute to the design and screening of materials for CO2 adsorption and separation in practical applications.

2.
Phys Chem Chem Phys ; 22(28): 16157-16164, 2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32638765

RESUMO

Evaporation is a typical heat and mass transfer process, which is important in both nature and industry. Here, the evaporation of five fluid samples (pure Ar, pure Kr and Ar/Kr mixtures with molar ratio Ar : Kr = 1 : 3, Ar : Kr = 1 : 1 and Ar : Kr = 3 : 1) on Pt surface was investigated using molecular dynamics simulations. Colligative properties of the mixtures led to the melting of the Ar/Kr mixtures (Ar : Kr = 1 : 1, Ar : Kr = 3 : 1) at 70 K below the triple point of Ar. Furthermore, under the same condition, the other systems were frozen as the solid state. The Pt surface at 90 K, over the boiling point of Ar, triggered the evaporation of Ar atoms in all the systems while the Kr atoms remained in the condensed state. Kr atoms were reported to be evaporated to a large extent when the Pt surface was heated to 120 K near the boiling point of Kr. The presence of Kr could reduce the evaporation of the Ar atoms, especially when the mole ratio of Ar : Kr in the mixture was 1 : 1 because the Ar : Kr = 1 : 1 system can effectively reduce the temperature of the gas-liquid interface. The temperature of the fluid samples then decreased with increase in distance between Pt and fluid atoms because the evaporated atoms could take the thermal energy away from the condensed films. Moreover, both Ar and Kr atoms, which were close to the Pt surface, hardly changed during evaporation because of the strong attractive force from the Pt substrate.

3.
Int J Mol Sci ; 20(9)2019 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-31075976

RESUMO

The study of changes in the related mechanical property and microscopic structure of methane hydrate during the decomposition process are of vital significance to its exploitation and comprehensive utilization. This paper had employed the molecular dynamics (MD) method to investigate the influence of defects on the microscopic structure and mechanical property of the sI methane hydrate system, and to discover the mechanical property for the defect-containing hydrate system to maintain its brittle materials. Moreover, the stress-strain curve of each system was analyzed, and it was discovered that the presence of certain defects in the methane hydrate could promote its mechanical property; however, the system mechanical property would be reduced when the defects had reached a certain degree (particle deletion rate of 9.02% in this study). Besides, the microscopic structures of the sI methane hydrate before and after failure were analyzed using the F3 order parameter value method, and it was found that the F3 order parameters near the crack would be subject to great fluctuations at the time of failure of the hydrate structure. The phenomenon and conclusions drawn in this study provide a basis for the study of the microscopic structure and mechanical characteristics of methane hydrate.


Assuntos
Metano/química , Simulação de Dinâmica Molecular , Água/química , Estresse Mecânico
4.
Sci Rep ; 10(1): 17113, 2020 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-33033345

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

5.
Sci Rep ; 10(1): 7265, 2020 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-32350321

RESUMO

The refrigerant circulation heat can be enhanced through the mutual transformation between thermal energy and surface energy during the adsorption and separation process of fluid molecules in porous materials. In this paper, the adsorption and energy storage of R1234ze(z), R1234yf, R32 and R134a, as well as their mixed refrigerants in Mg-MOF-74 and Ni-MOF-74 nanoparticles were investigated by means of molecular dynamics simulations and grand canonical Monte Carlo simulations. The results suggested that, in the case of pure refrigerant adsorption, the adsorption quantities of R32 and R134a in MOFs were higher than those of R1234yf and R1234ze(z). However, in the case of saturation adsorption, the desorption heat of R32 was lower than that of R1234yf and R1234ze(z). The addition of MOF-74 nanoparticles (NPs) could enhance the energy storage capacity of the pure refrigerant; besides, R1234yf and R1234ze(z) nanofluids had superior enhancement effect to that of R32 nanofluid. In mixed refrigerant adsorption, the adsorption quantities of R1234ze(z) and R1234yf were lower than those of R32 and R134a; with the increase in temperature, the adsorption of R1234ze(z) and R1234yf showed a gradually increasing trend, while that of R32 was gradually decreased.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA