Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Inorg Chem ; 63(23): 10691-10704, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38805682

RESUMO

As the main challenge of dental healthcare, oral infectious diseases are highly associated with the colonization of pathogenic microbes. However, current antibacterial treatments in the field of stomatology still lack a facile, safe, and universal approach. Herein, we report the controllable synthesis of copper aluminum-layered double hydroxides (CuAl-LDHs) with high Fenton-like catalytic activity, which can be utilized in the treatment of oral infectious diseases with negligible side effects. Our strategy can efficiently avoid the unwanted doping of other divalent metal ions in the synthesis of Cu-contained LDHs and result in the formation of binary CuAl-LDHs with high crystallinity and purity. Evidenced by experimental and theoretical results, CuAl-LDHs exhibit excellent catalytic ability toward the ·OH generation in the presence of H2O2 and hold strong affinity toward bacteria, endowing them with great catalytic sterilization against both Gram-positive and Gram-negative bacteria. As expected, these CuAl-LDHs provide outstanding treatments for mucosal infection and periodontitis by promoting wound healing and remodeling of the periodontal microenvironment. Moreover, toxicity investigation demonstrates the overall safety. Accordingly, the current study not only provides a convenient and economic strategy for treating oral infectious diseases but also extends the development of novel LDH-based Fenton or Fenton-like antibacterial reagents for further biomedical applications.


Assuntos
Alumínio , Antibacterianos , Cobre , Peróxido de Hidrogênio , Cobre/química , Cobre/farmacologia , Catálise , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/farmacologia , Alumínio/química , Alumínio/farmacologia , Hidróxidos/química , Hidróxidos/farmacologia , Testes de Sensibilidade Microbiana , Animais , Ferro/química , Ferro/farmacologia , Saúde Bucal , Camundongos , Humanos , Bactérias Gram-Negativas/efeitos dos fármacos
2.
Sensors (Basel) ; 23(13)2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37447657

RESUMO

With the increasing demand for remote sensing image applications, extracting the required images from a huge set of remote sensing images has become a hot topic. The previous retrieval methods cannot guarantee the efficiency, accuracy, and interpretability in the retrieval process. Therefore, we propose a bag-of-words association mapping method that can explain the semantic derivation process of remote sensing images. The method constructs associations between low-level features and high-level semantics through visual feature word packets. An improved FP-Growth method is proposed to achieve the construction of strong association rules to semantics. A feedback mechanism is established to improve the accuracy of subsequent retrievals by reducing the semantic probability of incorrect retrieval results. The public datasets AID and NWPU-RESISC45 were used to validate these experiments. The experimental results show that the average accuracies of the two datasets reach 87.5% and 90.8%, which are 22.5% and 20.3% higher than VGG16, and 17.6% and 15.6% higher than ResNet18, respectively. The experimental results were able to validate the effectiveness of our proposed method.


Assuntos
Algoritmos , Semântica , Tecnologia de Sensoriamento Remoto , Armazenamento e Recuperação da Informação , Reconhecimento Automatizado de Padrão/métodos
3.
Front Bioeng Biotechnol ; 11: 1121477, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36741744

RESUMO

As the primary cause of many tissue damage and diseases, reactive oxygen species (ROS) and reactive nitrogen species (RNS) are well known to be extremely harmful to a variety of biological components in cells including lipids, proteins and DNA. Numerous antioxidative nanomaterials have been artificially designed and rationally synthesized to protect cells from the oxidative damage caused by reactive oxygen species/reactive nitrogen species. Recent studies demonstrate that low dimensional carbon antioxidative nanomaterials have received a lot of attention owing to their tiny nanoscales and unique physicochemical property. As a result, a brief overview of recent advancements in antioxidant low-dimensional carbon materials is provided. Typically, carbon nanomaterials are classified according to their nanostructure dimensions, which are zero-dimension, one-dimension, and two-dimension. Last but not least, the challenges and perspectives of these high-performance low-dimensional materials in biomedical fields and further clinical usages are discussed as well.

4.
Front Bioeng Biotechnol ; 10: 1066552, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36466336

RESUMO

As an important worldwide medical issue, bone defect exhibits a variety of physical and psychological consequences on sufferers. Some features of clinical treatments including bone grafting and limb shortening are not satisfactory. Recently, bone tissue engineering has been considered as the most effective approach to dealing with the issue of bone deformities. Meanwhile, a variety of biomaterials have been rationally designed and created for the bone regeneration and tissue repairing. Among all these admirable biomaterials for bone remodeling, zeolite-based materials can serve as efficient scaffold candidates with excellent osteo-inductivity. In addition, the porous nature and high biocompatibility of zeolites endow them with the ability as ideal substrates for cell adhesion and proliferation. More importantly, zeolites are investigated as potential coating materials for implants because they have been proven to increase osteo-conductivity and aid in local elastic modeling. Last but not least, zeolites can also be used to treat bone disorders and act as dietary supplements during the practical applications. Accordingly, numerous benefits of zeolite prompt us to summarize their recent biomedical progress including but not limited to the distinguishing characteristics, broad classifications, as well as promising usages in bone tissue engineering.

6.
Ther Clin Risk Manag ; 13: 533-544, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28458556

RESUMO

OBJECTIVES: The aim of this study was to perform an updated systematic review and meta-analysis to assess the clinical efficacy, safety, and cost-effectiveness of negative-pressure wound therapy (NPWT) in the treatment of diabetic foot ulcers (DFUs). METHODS: We searched the Cochrane Library, MEDLINE, EMBASE, Ovid, and Chinese Biological Medicine databases up to June 30, 2016. We also manually searched the articles from reference lists of the retrieved articles, which used the NPWT system in studies of vacuum-assisted closure therapy. Studies were identified and selected, and two independent reviewers extracted data from the studies. RESULTS: A total of eleven randomized controlled trials, which included a total of 1,044 patients, were selected from 691 identified studies. Compared with standard dressing changes, NPWT had a higher rate of complete healing of ulcers (relative risk, 1.48; 95% confidence interval [CI]: 1.24-1.76; P<0.001), shorter healing time (mean difference, -8.07; 95% CI: -13.70- -2.45; P=0.005), greater reduction in ulcer area (mean difference, 12.18; 95% CI: 8.50-15.86; P<0.00001), greater reduction in ulcer depth (mean difference, 40.82; 95% CI: 35.97-45.67; P<0.00001), fewer amputations (relative risk, 0.31; 95% CI: 0.15-0.62; P=0.001), and no effect on the incidence of treatment-related adverse effects (relative risk, 1.12; 95% CI: 0.66-1.89; P=0.68). Meanwhile, many analyses showed that the NPWT was more cost-effective than standard dressing changes. CONCLUSION: These results indicate that NPWT is efficacious, safe, and cost-effective in treating DFUs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA