Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Sensors (Basel) ; 22(17)2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36081109

RESUMO

In this paper, a robust differential game guidance law is proposed for the nonlinear zero-sum system with unknown dynamics and external disturbances. First, the continuous-time nonlinear zero-sum differential game problem is transformed into solving the nonlinear Hamilton-Jacobi-Isaacs equation, a time-varying cost function is developed to reflect the fixed terminal time, and the robust guidance law is developed to compensate for the external disturbance. Then, a novel neural network identifier is designed to approximate the unknown nonlinear dynamics with online weight tuning. Subsequently, an online critic neural network approximator is presented to estimate the cost function, and time-varying activation functions are considered to deal with the fixed final time problem. An adaptive weight tuning law is given, where two additional terms are added to ensure the stability of the closed-loop nonlinear system and so as to meet the terminal cost at a fixed final time. Furthermore, the uniform ultimate boundedness of the closed-loop system and the critic neural network weights estimation error are proven based upon the Lyapunov approach. Finally, some simulation results are presented to demonstrate the effectiveness of the proposed robust differential game guidance law for nonlinear interception.


Assuntos
Redes Neurais de Computação , Dinâmica não Linear , Algoritmos , Simulação por Computador , Retroalimentação
2.
Physica A ; 590: 126717, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-34924686

RESUMO

The global spread of COVID-19 has not been effectively controlled, posing a huge threat to public health and the development of the global economy. Currently, a number of vaccines have been approved for use and vaccination campaigns have already started in several countries. This paper designs a mathematical model considering the impact of vaccination to study the spread dynamics of COVID-19. Some basic properties of the model are analyzed. The basic reproductive number ℜ 1 of the model is obtained, and the conditions for the existence of endemic equilibria are provided. There exist two endemic equilibria when ℜ 1 < 1 under certain conditions, which will lead to backward bifurcation. The stability of equilibria are analyzed, and the condition for the backward bifurcation is given. Due to the existence of backward bifurcation, even if ℜ 1 < 1 , COVID-19 may remain prevalent. Sensitivity analysis and simulations show that improving vaccine efficacy can control the spread of COVID-19 faster, while increasing the vaccination rate can reduce and postpone the peak of infection to a greater extent. However, in reality, the improvement of vaccine efficacy cannot be realized in a short time, and relying only on increasing the vaccination rate cannot quickly achieve the control of COVID-19. Therefore, relying only on vaccination may not completely and quickly control COVID-19. Some non-pharmaceutical interventions should continue to be enforced to combat the virus. According to the sensitivity analysis, we improve the model by including some non-pharmaceutical interventions. Combining the sensitivity analysis with the simulation of the improved model, we conclude that together with vaccination, reducing the contact rate of people and increasing the isolation rate of infected individuals will greatly reduce the number of infections and shorten the time of COVID-19 spread. The analysis and simulations in this paper can provide some useful suggestions for the prevention and control of COVID-19.

3.
Nonlinear Dyn ; 109(1): 265-284, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35283556

RESUMO

In the absence of specific drugs and vaccines, the best way to control the spread of COVID-19 is to adopt and diligently implement effective and strict anti-epidemic measures. In this paper, a mathematical spread model is proposed based on strict epidemic prevention measures and the known spreading characteristics of COVID-19. The equilibria (disease-free equilibrium and endemic equilibrium) and the basic regenerative number of the model are analyzed. In particular, we prove the asymptotic stability of the equilibria, including locally and globally asymptotic stability. In order to validate the effectiveness of this model, it is used to simulate the spread of COVID-19 in Hubei Province of China for a period of time. The model parameters are estimated by the real data related to COVID-19 in Hubei. To further verify the model effectiveness, it is employed to simulate the spread of COVID-19 in Hunan Province of China. The mean relative error serves to measure the effect of fitting and simulations. Simulation results show that the model can accurately describe the spread dynamics of COVID-19. Sensitivity analysis of the parameters is also done to provide the basis for formulating prevention and control measures. According to the sensitivity analysis and corresponding simulations, it is found that the most effective non-pharmaceutical intervention measures for controlling COVID-19 are to reduce the contact rate of the population and increase the quarantine rate of infected individuals.

4.
Entropy (Basel) ; 24(12)2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36554230

RESUMO

The gravitational search algorithm is a global optimization algorithm that has the advantages of a swarm intelligence algorithm. Compared with traditional algorithms, the performance in terms of global search and convergence is relatively good, but the solution is not always accurate, and the algorithm has difficulty jumping out of locally optimal solutions. In view of these shortcomings, an improved gravitational search algorithm based on an adaptive strategy is proposed. The algorithm uses the adaptive strategy to improve the updating methods for the distance between particles, gravitational constant, and position in the gravitational search model. This strengthens the information interaction between particles in the group and improves the exploration and exploitation capacity of the algorithm. In this paper, 13 classical single-peak and multi-peak test functions were selected for simulation performance tests, and the CEC2017 benchmark function was used for a comparison test. The test results show that the improved gravitational search algorithm can address the tendency of the original algorithm to fall into local extrema and significantly improve both the solution accuracy and the ability to find the globally optimal solution.

5.
Sensors (Basel) ; 19(4)2019 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-30823611

RESUMO

The active aircraft defense problem is investigated for the stochastic scenario wherein a defending missile (or a defender) is employed to protect a target aircraft from an attacking missile whose pursuit guidance strategy is unknown. For the purpose of identifying the guidance strategy, the static multiple model estimator (sMME) based on the square-root cubature Kalman filter is proposed, and each model represents a potential attacking missile guidance strategy. Furthermore, an estimation enhancement approach is provided by using pseudo-measurement. For each model in the sMME, the model-matched cooperative guidance laws for the target and defender are derived by formulating the active defense problem as a constrained linear quadratic problem, where an accurate defensive interception and the minimum evasion miss distance are both considered. The proposed adaptive cooperative guidance laws are the result of mixing the model-matched optimal cooperative guidance laws in the criterion of maximum a posteriori probability in the framework of the sMME. By adopting the adaptive cooperative guidance laws, the target can facilitate the defender's interception with the attacking missile with less control effort. Also, simulation results show that the proposed guidance laws increase the probability of successful target protection in the stochastic scenario compared with other defensive guidance laws.

6.
Sensors (Basel) ; 18(10)2018 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-30261659

RESUMO

Standard Bayesian filtering algorithms only work well when the statistical properties of system noises are exactly known. However, this assumption is not always plausible in real target tracking applications. In this paper, we present a new estimation approach named adaptive fifth-degree cubature information filter (AFCIF) for multi-sensor bearings-only tracking (BOT) under the condition that the process noise follows zero-mean Gaussian distribution with unknown covariance. The novel algorithm is based on the fifth-degree cubature Kalman filter and it is constructed within the information filtering framework. With a sensor selection strategy developed using observability theory and a recursive process noise covariance estimation procedure derived using the covariance matching principle, the proposed filtering algorithm demonstrates better estimation accuracy and filtering stability. Simulation results validate the superiority of the AFCIF.

7.
Angew Chem Int Ed Engl ; 57(4): 1053-1056, 2018 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-29193608

RESUMO

Nanostructured polyion complexes (PICs) are appealing in biomaterials applications. Yet, conventional assembly suffers from the weakness in scale-up and reproducibility. Only a few low-dimensional PICs are available to date. Herein we report an efficient and scalable strategy to prepare libraries of low-dimensional PICs. It involves a visible-light-mediated RAFT polymerization of ionic monomer in the presence of a polyion of the opposite charge at 5-50 % w/w total solids concentration in water at 25 °C, namely, polymerization-induced electrostatic self-assembly (PIESA). A Vesicle, multi-compartmental vesicle, and large-area unilamellar nanofilm can be achieved in water. A long nanowire and porous nanofilm can be prepared in methanol/water. An unusual unimolecular polyion complex (uPIC)-sphere-branch/network-film transition is reported. This green chemistry offers a general platform to prepare various low-dimensional PICs with high reproducibility on a commercially viable scale under eco-friendly conditions.

8.
Macromol Rapid Commun ; 38(17)2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28691315

RESUMO

Easy access to discrete nanoclusters in metal-folded single-chain nanoparticles (metal-SCNPs) and independent ultrafine sudomains in the assemblies via coordination-driven self-assembly of hydrophilic copolymer containing 9% imidazole groups is reported herein. 1 H NMR, dynamic light scattering, and NMR diffusion-ordered spectroscopy results demonstrate self-assembly into metal-SCNPs (>70% imidazole-units folded) by neutralization in the presence of Cu(II) in water to pH 4.6. Further neutralization induces self-assembly of metal-SCNPs (pH 4.6-5.0) and shrinkage (pH 5.0-5.6), with concurrent restraining residual imidazole motifs and hydrophilic segment, which organized into constant nanoparticles over pH 5.6-7.5. Atomic force microscopy results evidence discrete 1.2 nm nanoclusters and sub-5-nm subdomains in metal-SCNP and assembled nanoparticle. Reduction of metal center using sodium ascorbate induces structural rearrangement to one order lower than the precursor. Enzyme mimic catalysis required media-tunable discrete ultrafine interiors in metal-SCNPs and assemblies have hence been achieved.


Assuntos
Nanopartículas Metálicas/química , Cobre/química , Interações Hidrofóbicas e Hidrofílicas , Estrutura Molecular , Polímeros , Água/química
9.
J Environ Sci (China) ; 55: 197-205, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28477813

RESUMO

The phosphorus (P) fraction distribution and formation mechanism in the supernatant after P adsorption onto iron oxides and iron oxide-humic acid (HA) complexes were analyzed using the ultrafiltration method in this study. With an initial P concentration of 20mg/L (I=0.01mol/L and pH=7), it was shown that the colloid (1kDa-0.45µm) component of P accounted for 10.6%, 11.6%, 6.5%, and 4.0% of remaining total P concentration in the supernatant after P adsorption onto ferrihydrite (FH), goethite (GE), ferrihydrite-humic acid complex (FH-HA), goethite-humic acid complex (GE-HA), respectively. The <1kDa component of P was still the predominant fraction in the supernatant, and underestimated colloidal P accounted for 2.2%, 55.1%, 45.5%, and 38.7% of P adsorption onto the solid surface of FH, FH-HA, GE and GE-HA, respectively. Thus, the colloid P could not be neglected. Notably, it could be interpreted that Fe3+ hydrolysis from the adsorbents followed by the formation of colloidal hydrous ferric oxide aggregates was the main mechanism for the formation of the colloid P in the supernatant. And colloidal adsorbent particles co-existing in the supernatant were another important reason for it. Additionally, dissolve organic matter dissolved from iron oxide-HA complexes could occupy large adsorption sites of colloidal iron causing less colloid P in the supernatant. Ultimately, we believe that the findings can provide a new way to deeply interpret the geochemical cycling of P, even when considering other contaminants such as organic pollutants, heavy metal ions, and arsenate at the sediment/soil-water interface in the real environment.


Assuntos
Compostos Férricos/química , Modelos Químicos , Fósforo/química , Adsorção , Arseniatos , Coloides , Substâncias Húmicas , Concentração de Íons de Hidrogênio , Compostos de Ferro , Minerais , Compostos Orgânicos , Óxidos , Solo , Ultrafiltração
10.
Macromol Rapid Commun ; 37(15): 1275-81, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27219860

RESUMO

Understanding nanoscale structural hierarchy/complexity of hydrophilic flexible polymers is imperative because it can be viewed as an analogue to protein-alike superstructures. However, current understanding is still in infancy. Herein the first demonstration of nanoscale structural hierarchy/complexity via copper chelation-induced self-assembly (CCISA) is presented. Hierarchically-ordered colloidal networks and disks can be achieved by deliberate control of spacer length and solution pH. Dynamic light scattering, transmission electron microscopy, and atomic force microscopy demonstrate that CCISA underwent supramolecular-to-supracolloidal stepwise-growth mechanism, and underline amazing prospects to the hierarchically-ordered superstructures of hydrophilic flexible polymers in water.


Assuntos
Quelantes/química , Cobre/química , Metilmetacrilatos/química , Ácidos Polimetacrílicos/química , Coloides , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Microscopia de Força Atômica , Microscopia Eletrônica de Transmissão , Peptidomiméticos/química , Soluções , Água/química
11.
Soft Matter ; 11(27): 5546-53, 2015 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-26068708

RESUMO

An emerging strategy towards the sophistication of supramolecular nanomaterials is the use of supracolloidal self-assembly, in which micelles or colloids are used as building blocks. Binding directionality can produce nanostructures with attractive properties. Herein, we present a new directional supracolloidal self-assembly by virtue of dynamic covalent bonds and metal coordination in water. Conjugation of a ligand precursor to a water-soluble block copolymer through dynamic covalent bonds leads to the dehydration and micellization of the functionalized polymer. Reversible reaction facilitates the permeation of metal ions into core-shell interfaces. Conversely, metal-coordination promotes reaction over the interfaces. Cu(ii)-coordination occurs overwhelmingly inside each isolated micelle. However, Zn(ii)-coordination induced a directional self-assembly whose nanostructures evolve stepwise from nanorods, nanowires, necklaces, and finally to supracolloidal networks scaling-up to several tens of micrometres. Post-reactions of simultaneous dynamic covalent bond conversion and Zn(ii)-coordination over the core-shell interfaces endow these supracolloidal networks with a huge specific surface area for hydrophobic dative metal centres accessible to substrates in water. Water-soluble shells play important roles in directional supracolloidal assembly and in the stabilization of nanostructures. Thus the directional self-assembly provides a versatile platform to produce metallo-hybridized nanomaterials that are promising as enzyme-inspired aqueous catalysts.

12.
Macromol Rapid Commun ; 36(16): 1505-10, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26033785

RESUMO

Controlling the orientation and long-range order of nanostructures is a key issue in the self-assembly of block copolymer micelles. Herein, a versatile strategy is presented to transform one-component oxime-based block copolymer micelles into long-range ordered dense nanopatterns. Photoisomerization provides a straightforward and versatile approach to convert the hydrogen-bonding association from inward dimerization (E-type oxime motifs, slightly desolvated in ethyl acetate) into outward interchain association (Z-type ones, highly desolvated in ethyl acetate). This increases the glass transition temperature in bulk and converts swollen micelles into compact spherical micelles in solution. The reconstruction of these micelles on various substrates demonstrates that the phase transformation enables reconstruction of spherical micelles into mesoscopic sheets, nanorods, nanoworms, nanowires, networks, and eventually into long-range ordered and densely packed textile-like and lamellar nanopatterns on a macroscopic scale by adjusting E/Z-oxime ratio and solvent-evaporation rate.


Assuntos
Ligação de Hidrogênio/efeitos da radiação , Nanopartículas/química , Polímeros/química , Hidrogênio/química , Luz , Micelas , Polímeros/síntese química , Solventes/química , Propriedades de Superfície
13.
Macromol Rapid Commun ; 36(16): 1521-7, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26140705

RESUMO

Simultaneous coordination-association and electrostatic-repulsion interactions play critical roles in the construction and stabilization of enzymatic function metal centers in water media. These interactions are promising for construction and self-assembly of artificial aqueous polymer single-chain nanoparticles (SCNPs). Herein, the construction and self-assembly of dative-bonded aqueous SCNPs are reported via simultaneous coordination-association and electrostatic-repulsion interactions within single chains of histamine-based hydrophilic block copolymer. The electrostatic-repulsion interactions are tunable through adjusting the imidazolium/imidazole ratio in response to pH, and in situ Cu(II)-coordination leads to the intramolecular association and single-chain collapse in acidic water. SCNPs are stabilized by the electrostatic repulsion of dative-bonded block and steric shielding of nonionic water-soluble block, and have a huge specific surface area of function metal centers accessible to substrates in acidic water. Moreover, SCNPs can assemble into micelles, networks, and large particles programmably in response to the solution pH. These unique media-sensitive phase-transformation behaviors provide a general, facile, and versatile platform for the fabrication of enzyme-inspired smart aqueous catalysts.


Assuntos
Nanopartículas/química , Polímeros/química , Água , Polímeros/síntese química , Eletricidade Estática
14.
Macromol Rapid Commun ; 35(16): 1430-5, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24889131

RESUMO

An acceleration effect and selective monomer addition during RAFT copolymerization of the oppositely-charged ionic monomers in dilute aqueous solution at 25 °C are reported. The reaction is conducted using a non-ionic water-soluble polymer as a macromolecular chain transfer agent under visible light irradiation. A fast iterative polymerization can be induced, even in dilute solution, by the favorable ionic interactions and in situ self-assembly of zwitterionic growing chains. Selelctive monomer addition is achieved in the statistical copolymerization due to the ion-pairing of the oppositely-charged monomers, such as precisely the same reaction rates at a 1:1 of monomer ratio, otherwise a faster reaction of the minor monomer component over the major one. These behaviors open up an avenue towards the rapid synthesis of sequence-controlled zwitterionic polyelectrolytes that can satisfy the demands of emerging biological applications.


Assuntos
Polímeros/química , Água/química , Eletrólitos/química , Íons/química , Cinética , Luz , Polimerização , Polímeros/síntese química , Temperatura
15.
Anim Biosci ; 37(8): 1408-1417, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38419537

RESUMO

OBJECTIVE: This study investigated the effects of dietary supplementation with lysolecithins (LPC) on growth performance, nutrient digestibility, blood profiles, immunity, and liver health in broiler chickens. METHODS: A cohort of 240 one-day-old male Arbor Acres broilers of comparable weight was divided into four treatment groups, each comprising six replicates of 10 birds. The groups were defined as follows: positive control with recommended metabolizable energy (PC+ME), negative control with 90 kcal/kg reduced ME (NC+ME), PC supplemented with 300 mg/kg LPC (PC+LPC), and NC supplemented with 300 mg/kg LPC (NC+LPC). RESULTS: LPC supplementation led to a statistically significant reduction in the feed conversion ratio (p = 0.05) and a decrease in the proportion of abdominal fat and the liver (p<0.05). Digestibility of dry matter was also enhanced (p<0.05). Malondialdehyde concentrations in the liver were significantly reduced by LPC (p<0.01), with a noteworthy interaction between energy levels and LPC affecting this reduction (p<0.05). Serum levels of interleukin-6 were reduced on day 21, and both endotoxin and interleukin-6 levels were lower on day 42. Notably, a significant interaction was observed between the energy levels and LPC on relative liver weight and endotoxin concentrations in the serum (p<0.05). CONCLUSION: The study concluded that LPC positively affects growth performance, nutrient digestibility, immune response, and antioxidative capacity in broiler chickens, affirming its value as a beneficial feed additive in poultry nutrition.

16.
J Anim Sci ; 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39022917

RESUMO

The study investigated the effects of dietary probiotic of dual-strain Bacillus subtilis (BS) on production performance, intestinal barrier parameters, and microbiota in broiler chickens. In a randomized trial, male broiler chickens were allocated into three groups, a control group (basal diet), BS300 group (basal diet with 300 mg/kg BS), and BS500 group (basal diet with 500 mg/kg BS). The inclusion of 500 mg/kg BS significantly reduced the feed conversion ratio by 4.55% during the starting phase. Both 300 and 500 mg/kg BS supplementation increased jejunal villus height (by 17.89% and 24.8%, respectively) significantly and decreased jejunal crypt depth (by 27.2% and 31.9%, respectively) on day 21. The addition of 500 mg/kg BS significantly elevated the gene expression of occludin on day 35. Moreover, BS supplementation enhanced cytokine levels and immunoglobulins in both serum and jejunal mucosa. Microbial analysis indicated that BS increased the abundance of potential probiotics (Sutterella) and butyrate-producing bacteria (Lachnoclostridium, Tyzzerella, Anaerostipes, Clostridium_sensu_stricto_13, Prevotellaceae_NK3B31_group, and Lachnospiraceae_UCG-010). The abundances of Anaerostipes and Sutterella, are significantly correlated with growth performance and immune function. In conclusion, dietary supplementation with BS improved the growth performance, potentially through the regulation of immunity, intestinal barrier function, and microbiota in broilers. Notably, 500 mg/kg of BS exhibited more benefits for broilers compared to the 300 mg/kg.

17.
Macromol Rapid Commun ; 34(18): 1459-63, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23929595

RESUMO

Botryoid-shaped reactive terpolymer nanoparticles, whose aldehyde-functional living domains are miniaturized into small-sized discrete "grapes" and attached onto the outwardly-branched scaffolds of fluorinated segments, are reported. These nanostructures can be fabricated by spontaneous structural reorganization of core-shell terpolymer micelles simply by manipulating drying conditions. The miniaturized discrete living domains are stabilized by outwardly-branched scaffolds and exhibit excellent accessibility to solution media, thus can effectively respond to solution media, which is desired in sensor-related applications.


Assuntos
Nanopartículas/química , Polímeros/química , Humanos , Micelas , Nanoestruturas/química , Polietilenoglicóis/química
18.
Macromol Rapid Commun ; 34(5): 411-6, 2013 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-23288579

RESUMO

Thermoresponsive synergistic hydrogen bonding (H-bonding) switched by several guest units in a water-soluble polymer is reported. Adjusting the distribution of guest units can effectively change the synergistic H-bonding inside polymer chains, thus widely switch the preorganization and thermoresponsive behavior of a water-soluble polymer. The synergistic H-bonding is also evidenced by converting less polar aldehyde groups into water-soluble oxime groups, which bring about the lowering-down of cloud point and an amplified hysteresis effect. This is a general approach toward the wide tunability of thermosensitivity of a water-soluble polymer simply by adjusting the distribution of several guest H-bonding units.


Assuntos
Polímeros/química , Água/química , Ligação de Hidrogênio , Solubilidade , Temperatura
19.
Macromol Rapid Commun ; 34(23-24): 1827-32, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24214231

RESUMO

The attempts to mediate iterative RAFT polymerization of ionic monomers through visible light irradiation in water at 20 °C is reported, in which complete conversions are attained in several tens of minutes and the propagation suspends/restarts immediately for multiple times on cycling irradiation. This technique suits the one-pot synthesis of NH2 /imidazole-based polymers with tuned structures from homo to random, block, random-block, and block-random-block, thus is robust and promising to control the sequence of the ionized water-soluble reactive copolymers.


Assuntos
Luz , Polímeros/química , Água/química , Imidazóis/química , Polimerização , Temperatura
20.
ACS Macro Lett ; 12(8): 1045-1051, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37440526

RESUMO

We report the use of l-aspartic acid chiral ionic hydrogen bonds to drive liquid-liquid phase separation (LLPS) and precision two-dimensional electrostatic self-assembly in photo-RAFT aqueous polymerization-induced self-assembly (photo-PISA). Homopolymerization can yield salt-resistant, 3 nm ultrafine fibril-structured 5 nm ultrathin lamellae via LLPS, a left-to-right-handed chirality transition, and a droplets-to-lamellae transition. Like-charge block copolymerization leads to supercharged yet identical fibril-structured ultrathin lamellae, also, via LLPS, the left-to-right chirality transition and the droplets-to-lamellae transition. Ultrafine structures maintain intactness upon the seeded polymerization of the oppositely charged monomer. This work demonstrates that amino acid chiral ionic hydrogen bonds are powerful for the precision synthesis of salt-resistant ultrathin membrane nanomaterials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA