Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
Angew Chem Int Ed Engl ; 63(18): e202401331, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38456641

RESUMO

A general approach to constructing room temperature phosphorescence (RTP) materials involves the incorporation of a phosphorescent emitter into a rigid host or polymers with high glass transition temperature. However, these materials often suffer from poor processability and suboptimal mechanical properties, limiting their practical applications. In this work, we developed benzothiadiazole-based dialkene (BTD-HEA), a multifunctional phosphorescent emitter with a remarkable yield of intersystem crossing (ΦISC, 99.83 %). Its high triplet exciton generation ability and dialkene structure enable BTD-HEA to act as a photoinitiator and crosslinker, efficiently initiating the polymerization of various monomers within 120 seconds. A range of flexible phosphorescence gels, including hydrogels, organogels, ionogels, and aerogels were fabricated, which exhibit outstanding stretchability and recoverability. Furthermore, the unique fluorescent-phosphorescent colorimetric properties of the gels provide a more sensitive method for the visual determination of the polymerization process. Notably, the phosphorescent emission intensity of the hydrogel can be increased by the formation of ice, allowing for the precise detection of hydrogel freezing. The versatility of this emitter paves the way for fabricating various flexible phosphorescence gels with diverse morphologies using microfluidics, film-shearing, roll coating process, and two/three-dimensional printing, showcasing its potential applications in the fields of bioimaging and bioengineering.

2.
Angew Chem Int Ed Engl ; 63(5): e202317431, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38081786

RESUMO

Organic near-infrared room temperature phosphorescence (RTP) materials offer remarkable advantages in bioimaging due to their characteristic time scales and background noise elimination. However, developing near-infrared RTP materials for deep tissue imaging still faces challenges since the small band gap may increase the non-radiative decay, resulting in weak emission and short phosphorescence lifetime. In this study, fused-ring pyrrole-based structures were employed as the guest molecules for the construction of long wavelength emissive RTP materials. Compared to the decrease of the singlet energy level, the triplet energy level showed a more effectively decrease with the increase of the conjugation of the substituent groups. Moreover, the sufficient conjugation of fused ring structures in the guest molecule suppresses the non-radiative decay of triplet excitons. Therefore, a near-infrared RTP material (764 nm) was achieved for deep penetration bioimaging. Tumor cell membrane is used to coat RTP nanoparticles (NPs) to avoid decreasing the RTP performance compared to traditional coating by amphiphilic surfactants. RTP NPs with tumor-targeting properties show favorable phosphorescent properties, superior stability, and excellent biocompatibility. These NPs are applied for time-resolved luminescence imaging to eliminate background interference with excellent tissue penetration. This study provides a practical solution to prepare long-wavelength and long-lifetime organic RTP materials and their applications in bioimaging.


Assuntos
Luminescência , Nanopartículas , Membrana Celular , Pirróis
3.
Angew Chem Int Ed Engl ; 62(50): e202314273, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-37885123

RESUMO

The development of flexible, room-temperature phosphorescence (RTP) materials remains challenging owing to the quenching of their unstable triplet excitons via molecular motion. Therefore, a polymer matrix with Tg higher than room temperature is required to prevent polymer segment movement. In this study, a RTP material was developed by incorporating a 4-biphenylboronic acid (BPBA) phosphor into a poly(vinylidene fluoride) (PVDF) matrix (Tg =-27.1 °C), which exhibits a remarkable UV-light-dependent oxygen consumption phosphorescence with a lifetime of 1275.7 ms. The adjustable RTP performance is influenced by the crystallinity and polymorph (α, ß, and γ phases) fraction of PVDF, therefore, the low Tg of the PVDF matrix enables the polymeric segmental motion upon microwave irradiation. Consequently, a reduction in the crystallinity and an increase in the α phase fraction in PVDF film induces RTP after 2.45 GHz microwave irradiation. These findings open up new avenues for constructing crystalline and phase-dependent RTP materials while demonstrating a promising approach toward microwave detection.

4.
J Am Chem Soc ; 144(13): 6107-6117, 2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35316063

RESUMO

Long-lived organic room-temperature phosphorescence (RTP) has sparked intense explorations, owing to the outstanding optical performance and exceptional applications. Because triplet excitons in organic RTP experience multifarious relaxation processes resulting from their high sensitivity, spin multiplicity, inevitable nonradiative decay, and external quenchers, boosting RTP performance by the modulated triplet-exciton behavior is challenging. Herein, we report that cross-linked polyphosphazene nanospheres can effectively promote long-lived organic RTP. Through molecular engineering, multiple carbonyl groups (C═O), heteroatoms (N and P), and heavy atoms (Cl) are introduced into the polyphosphazene nanospheres, largely strengthening the spin-orbit coupling constant by recalibrating the electronic configurations between singlet (Sn) and triplet (Tn) excitons. In order to further suppress nonradiative decay and avoid quenching under ambient conditions, polyphosphazene nanospheres are encapsulated with poly(vinyl alcohol) matrix, thus synchronously prompting phosphorescence lifetime (173 ms longer), phosphorescence efficiency (∼12-fold higher), afterglow duration time (more than 20 s), and afterglow absolute luminance (∼19-fold higher) as compared with the 2,3,6,7,10,11-hexahydroxytriphenylene precursor. By measuring the emission intensity of the phosphorescence, an effective probe based on the nanospheres is developed for visible, quantitative, and expeditious detection of volatile organic compounds. More significantly, the obtained films show high selectivity and robustness for anisole detection (7.1 × 10-4 mol L-1). This work not only demonstrates a way toward boosting the efficiency of RTP materials but also provides a new avenue to apply RTP materials in feasible detection applications.

5.
J Am Chem Soc ; 144(3): 1361-1369, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-34937344

RESUMO

A series of poly(1,4-dihydropyridine)s (PDHPs) were successfully synthesized via one-pot metal-free multicomponent polymerization of diacetylenic esters, benzaldehyde, and aniline derivatives. These PDHPs without traditional luminescent units were endowed with tunable triplet energy levels by through-space conjugation from the formation of different cluster sizes. The large and compact clusters can effectively extend the phosphorescence wavelength. The triplet excitons can be stabilized by using benzophenone as a rigid matrix to achieve room-temperature phosphorescence. The nonconjugated polymeric clusters can show a phosphorescence emission up to 645 nm. A combination of static and dynamic laser light scattering was conducted for insight into the structural information on formed clusters in the host matrix melt. Moreover, both the fluorescence and phosphorescence emission can be easily tuned by the variation of the excitation wavelength, the concentration, and the molecular weight of the guest polymers. This work provides a unique insight for designing polymeric host-guest systems and a new strategy for the development of long wavelength phosphorescence materials.

6.
Small ; 18(40): e2203825, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36071022

RESUMO

Photodynamic immunotherapy is a promising treatment strategy that destroys primary tumors and inhibits the metastasis and relapse of distant tumors. As reactive oxygen species are an intermediary for triggering immune responses, photosensitizers (PSs) that can actively target and efficiently trigger oxidative stress are urgently required. Herein, pyrrolo[3,2-b]pyrrole as an electronic donor is introduced in acceptor-donor-acceptor skeleton PSs (TP-IS1 and TP-IS2) with aggregation-induced emission properties and high absorptivity. Meanwhile, pyrrolo[3,2-b]pyrrole derivatives innovatively prove their ability of type I photoreaction, indicating their promising hypoxia-tolerant advantages. Moreover, M1 macrophages depicting an ultrafast delivery through the cell-to-cell tunneling nanotube pathway emerge to construct TP-IS1@M1 by coating the photosensitizer TP-IS1. Under low concentration of TP-IS1@M1, an effective immune response of TP-IS1@M1 is demonstrated by releasing damage-associated molecular patterns, maturating dendritic cells, and vanishing the distant tumor. These findings reveal insights into developing hypoxia-tolerant PSs and an efficient delivery method with unprecedented performance against tumor metastasis.


Assuntos
Neoplasias , Fotoquimioterapia , Humanos , Hipóxia/tratamento farmacológico , Neoplasias/tratamento farmacológico , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Pirróis , Espécies Reativas de Oxigênio/metabolismo , Recidiva
7.
Angew Chem Int Ed Engl ; 61(13): e202200236, 2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35102661

RESUMO

Monotonous luminescence has always been a major factor limiting the application of organic room-temperature phosphorescence (RTP) materials. Enhancing and regulating the intermolecular interactions between the host and guest is an effective strategy to achieve excellent phosphorescence performance. In this study, intermolecular halogen bonding (CN⋅⋅⋅Br) was introduced into the host-guest RTP system. The interaction promoted intersystem crossing and stabilized the triplet excitons, thus helping to achieve strong phosphorescence emission. In addition, the weak intermolecular interaction of halogen bonding is sensitive to external stimuli such as heat, mechanical force, and X-rays. Therefore, the triplet excitons were easily quenched and colorimetric multi-stimuli responsive behaviors were realized, which greatly enriched the luminescence functionality of the RTP materials. This method provides a new platform for the future design of responsive RTP materials based on weak intermolecular interactions between the host and guest molecules.

8.
Acc Chem Res ; 53(12): 2879-2891, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33216523

RESUMO

Research interest in the isocyanide-based reaction can be traced back to 1921 when the Passerini reaction was first reported. However, most of these research efforts did not lead to important progress in the synthesis of isocyanide-based polymers (IBPs). The major challenge resides in the lack of highly efficient polymerization methods, which limits large-scale preparation and applications. Modern organic chemistry provides efficient access to develop functional IBPs on the basis of isocyanide chemistry. However, it is still challenging to prepare the IBPs with small molecular isocyanide reaction. Our investigations into catalyst exploration and polymerization methodology have prompted the synthesis of a series of IBPs. Two classes of isocyanide monomers can be used for the construction of IBPs. The first class includes monomers with a single isocyanide. Novel catalysts for the synthetic chemistry of isocyanide allow the introduction of functional pendants into the linear polymer chains. This molecular functionalization endows the polymers with an array of new functional properties. For example, the incorporation of a chromophore on the polymeric side chain provides novel functional properties, such as aggregation-induced emission and optical activity. Diisocyanide monomers can be also utilized for the construction of heterocyclic, spiro-heterocyclic, and bispiro-heterocyclic polymers in the polymeric backbones. A new concept of "multi-component spiropolymerization" has been developed for the preparation of spiropolymers using the catalysis-free one-pot reaction. Proper structural design allows for the preparation of a heterocyclic polymeric chain with natural bioactivity and biological compatibility, generating new IBPs with biofunctionalities.In this Account, we discuss progress mainly made in our lab and related fields for the design of isocyanide monomers, exploration of new catalysts, and optimization of reaction conditions. The subsequent section discusses the characteristic properties and applications of selected examples of these functional polymers, mainly focusing on their optical applications. We have investigated the UV-sensitive IBPs that could potentially be used for lithography applications. One-pot highly efficient polymerization of diisocyanides and CO2 under mild conditions can provide a new method for realizing the reuse of CO2 and reducing the greenhouse effect. Through a combination of structural modifications, IBPs bearing dimethylbenzene moieties exhibit characteristics of black materials that can be potentially utilized as pyroelectric sensors, thermal detectors, and optical instruments. Most recently, our group synthesized a spiro-heterocyclic IBP with clusterization-triggered emission properties that can be used to discriminate cancer cells from normal cells and provides a new method for the treatment of cancer. The studies reviewed in this Account suggest that polymerization with isocyanide chemistry can be implemented in diverse functional macromolecules and materials.


Assuntos
Cianetos/química , Polímeros/química , Sítios de Ligação , Dióxido de Carbono/química , Catálise , Linhagem Celular Tumoral , Humanos , Microscopia Confocal , Simulação de Acoplamento Molecular , Polimerização , Polímeros/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/química , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Nanomedicina Teranóstica , Raios Ultravioleta
9.
Macromol Rapid Commun ; 42(12): e2100029, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33987894

RESUMO

Multicomponent spiropolymerization (MCSP) provides an efficient synthetic tool for the construction of spiropolymers based on nonspiro monomers. In this study, a method of MCSP using diisocyanides 1, diethyl acetylenedicarboxylate 2, and halogenated quinones 3 is developed for the in situ construction of bis-spiropolymers with high molecular weights (Mw up to 29 200) and good yields (up to 87.7%) under mild reaction conditions. The structure of the obtained bis-spiropolymers is confirmed by gel permeation chromatography, Fourier transform infrared spectroscopy, and nuclear magnetic resonance analysis. Halogenated bis-spiropolymers show good thermal stability, good solubility, and film-forming ability. The photosensitizer rhodamine B is used as a doping agent to induce the photodegradation of the polymer P1a3c into small-molecule segments, which results in the slow release of halogenated spiro-groups under irradiation with simulated sunlight. This finding reveals that P1a3c has the potential to be applied in pesticides. Therefore, this MCSP is a novel method for preparing halogen-containing bis-spiropolymers, which accelerates the development of multifunctional polymer materials.


Assuntos
Alcinos , Quinonas , Fotólise , Polímeros , Espectroscopia de Infravermelho com Transformada de Fourier
10.
Macromol Rapid Commun ; 42(6): e2000463, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32989821

RESUMO

Polymers containing iminofuran (PIFs) are rarely reported due to the lack of simple and effective synthesis methods. In this work, a novel multicomponent cyclopolymerization (MCCP) of diisocyanides, activated alkynes, and 1,4-dibromo-2,3-butanedione using catalyst-free one-pot reactions under mild conditions to prepare PIFs containing bromomethyl groups is reported. PIFs with good solubility and thermal stability are obtained with high Mw s (up to 19 600) and good yields (up to 89.5%) under optimized polymerization conditions. The structure of the PIFs is characterized by nuclear magnetic resonance, Fourier transform infrared spectroscopy, and gel permeation chromatography. The photophysical properties indicate that polymers P1a2b3 and P1c2b3 have cluster-triggered emission characteristics. Thin films made from PIFs quickly degrade under UV irradiation. Moreover, the obtained polymers are decorated with bromomethyl and carboxylate groups in the side chain, which can be postfunctionalized to prepare multifunctional materials, such as star branched polymers and biomedical carrier materials. Thus, this work not only enriches the field of polymerization based on isocyanates and activated alkynes but also provides a facile strategy toward functional iminofuran polymers.


Assuntos
Alcinos , Diacetil , Catálise , Polimerização , Polímeros
11.
Chemistry ; 26(65): 14947-14953, 2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-32602178

RESUMO

Increasing the quantum yield of near-infrared (NIR) emissive dyes is critical for biological applications because these fluorescent dyes generally show decreased emission efficiency under aqueous conditions. In this work, we designed and synthesized several multiarylpyrrole (MAP) derivatives, in which a furanylidene (FE) group at the 3-position of the pyrrole forms donor-π-acceptor molecules, MAP-FE, with a NIR emissive wavelength and aggregation-enhanced emission (AEE) features. Different alkyl chains of MAP-FEs linked to phenyl groups at the 2,5-position of the pyrrole ring resulted in different emissive wavelengths and quantum yields in aggregated states, such as powders or single crystals. Powder XRD data and single crystal analysis elucidated that the different lengths of alkyl chains had a significant impact on the regularity of MAP-FEs when they were forced to aggregate or precipitate, which affected the intermolecular interaction and the restriction degree of the rotating parts, which are essential components. Therefore, an increasing number of NIR dyes could be developed by this design strategy to produce efficient NIR dyes with AEE. Moreover, this method can provide general guidance for other related fields, such as organic solar cells and organic light-emitting materials, because they are all applied in the aggregated state.

12.
Chemistry ; 26(72): 17376-17380, 2020 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-33090590

RESUMO

Dual/multi-component organic doped systems with room-temperature phosphorescence (RTP) properties have been developed. However, the unknown luminescence mechanism still greatly limits the development of the doped materials. Herein, a new doped system exhibiting phosphorescence/fluorescence dual emission (Φphos =4-24 % and τphos =101-343 ms) is successfully constructed through prediction and design. A series of isoquinoline derivatives with different alkoxy chains were selected as the guests. Benzophenone was chosen as the host owing to the characteristics of low melting point and good crystallinity. The alkoxy chain lengths of the guests are first reported to be used to control the fluorescence and phosphorescence intensities of the doped materials, which results in different prompt emission colors. Additionally, the doped ratio of the guest and host can also control the luminous intensities of the materials. In particular, the doped materials still exhibit phosphorescent properties even if the ratio of the guest/host is as low as 1:100 000.

13.
Molecules ; 25(10)2020 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-32456192

RESUMO

Recent studies have shown that molecular aggregation structures in precursor solutions of organic photovoltaic (OPV) polymers have substantial influence on polymer film morphology, exciton and charge carrier transport dynamics, and hence, the resultant device performance. To distinguish photophysical impacts due to increasing π-conjugation from chain lengthening and π-π stacking from single/multi chain aggregation in solution and film, we used oligomers of a well-studied charge transfer polymer PTB7 with different lengths as models to reveal intrinsic photophysical properties of a conjugated segment in the absence of inter-segment aggregation. In comparison with previously studied photophysical properties in polymeric PTB7, we found that oligomer dynamics are dominated by a process of planarization of the conjugated backbone into a quinoidal structure that resembles the self-folded polymer and that, when its emission is isolated, this quinoidal excited state resembling the planar polymer chain exhibits substantial charge transfer character via solvent-dependent emission shifts. Furthermore, the oligomers distinctly lack the long-lived charge separated species characteristic of PTB7, suggesting that the progression from charge transfer character in isolated chains to exciton splitting in neat polymer solution is modulated by the interchain interactions enabled by self-folding.


Assuntos
Compostos Orgânicos/química , Polimerização , Polímeros/química , Solventes/química , Compostos Orgânicos/síntese química , Polímeros/síntese química , Soluções/química
14.
Angew Chem Int Ed Engl ; 59(22): 8435-8439, 2020 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-32052897

RESUMO

Heteroatom-containing spiropolymers were constructed in a facile manner by a catalyst-free multicomponent spiropolymerization route. P1a2b as the most potent of these spiropolymers, demonstrates cluster-triggered emission resulting from strong interactions with the MDM2 protein. By preventing the anti-apoptotic p53/MDM2 interaction, P1a2b triggers apoptosis in cancerous cells, while demonstrating a good biocompatibility and non-toxicity in non-cancerous cells. The combined results from solution and cell-based cluster-triggered emission studies, docking, protein expression experiments and cytotoxicity data strongly support the MDM2-binding hypothesis and indicate a potential application as a fluorescent cancer marker as well as therapeutic for this spiropolymer.


Assuntos
Apoptose/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Compostos de Espiro/química , Compostos de Espiro/farmacologia , Linhagem Celular Tumoral , Humanos , Medicina de Precisão , Proteína Supressora de Tumor p53/metabolismo
15.
Angew Chem Int Ed Engl ; 59(37): 16054-16060, 2020 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-32500576

RESUMO

Organic materials with long-lived, color-tunable phosphorescence are potentially useful for optical recording, anti-counterfeiting, and bioimaging. Herein, we develop a series of novel host-guest organic phosphors allowing dynamic color tuning from the cyan (502 nm) to orange red (608 nm). Guest materials are employed to tune the phosphorescent color, while the host materials interact with the guest to activate the phosphorescence emission. These organic phosphors have an ultra-long lifetime of 0.7 s and a maximum phosphorescence efficiency of 18.2 %. Although color-tunable inks have already been developed using visible dyes, solution-processed security inks that are temperature dependent and display time-resolved printed images are unprecedented. This strategy can provide a crucial step towards the next-generation of security technologies for information handling.

16.
Angew Chem Int Ed Engl ; 58(12): 3834-3837, 2019 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-30600879

RESUMO

Cryosurgery has attracted much attention for the treatment of tumors owing to its clear advantages. However, determining the volume of frozen tissues in real-time remains a challenge, which greatly lowers the therapeutic efficacy of cryosurgery and hinders its broad application for the treatment of cancers. Herein, we report a freezing-induced turn-on strategy for the selective real-time imaging of frozen cancer cells. As a type of aggregation-induced emission (AIE) fluorogen, TABD-Py molecules interact specifically with ice crystals and form aggregates at the ice/water interface. Consequently, bright fluorescent emission appears upon freezing. TABD-Py molecules are enriched mostly in the cancer cells and exhibit high biocompatibility as well as low cytotoxicity; therefore, a freezing-induced turn-on imaging modality for cryosurgery is developed, which will certainly maximize the therapeutic efficacy of cryosurgery in treating tumors.


Assuntos
Criocirurgia/métodos , Piridinas/química , Animais , Corantes Fluorescentes/química , Células HeLa , Humanos , Gelo , Camundongos , Microscopia Confocal , Células NIH 3T3 , Piridinas/síntese química
17.
Chemistry ; 24(65): 17180-17187, 2018 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-30086195

RESUMO

Organic electronics generally deals with bulk, statistically averaged electrical properties of organic materials. Single-molecule electronic devices can then be viewed as linkers to these bulk properties. However, controlling charge transport in single-molecule systems still remains a formidable task and has prevented proliferation of these systems from research laboratories to household electronics. This Concept article provides a general overview of the recent advances made by our group in the field. We will describe several concepts in designing molecular functions towards controlling charge transport through molecular systems. It should be noted, however, that this Concept article is by no means comprehensive and readers should look elsewhere for a more comprehensive picture of molecular electronics.

18.
Chemistry ; 24(60): 15965-15977, 2018 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-29809296

RESUMO

Organic functional materials, including conjugated molecules and fluorescent dyes, have been intensely developed in recent years because they can be applied in many fields, such as solar cells, biosensing and bioimaging, and medical adjuvant therapy. Organic functional materials with aggregation-induced emission or aggregation-enhanced emission (AIE/AEE) characteristics have increasingly attracted attention due to their high quantum efficiency in the aggregated or solid state. A large variety of AIE/AEE materials have been designed and applied during the exponential growth of research interest in the abovementioned fields. Multiphenyl-substituted 1,3-butadiene (MPB), as a core structure that includes tetraphenyl-1,3-butadiene, hexaphenyl-1,3-butadiene and their derivatives, show a typical AIE/AEE feature and can be potentially used in all the above-mentioned fields. This review summarizes the design principles, the corresponding syntheses, and the structure-property relationships of MPBs, as well as their excellent innovative functionalities and applications. This review will be useful for scientists conducting chemistry, materials, and biomedical research in AIE/AEE-related fields.

19.
Chemistry ; 24(53): 14269-14274, 2018 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-30014523

RESUMO

2,3,4,5-Tetraphenyl-1H-pyrrole (TePP) was synthesized by a simple one-step reaction. The compound showed a balanced emission in both the solution and solid state with the absolute quantum yield of ΦF/THF =65.6 % and ΦF/solid =74.3 %, respectively. Temperature and viscosity variation measurements demonstrated that the phenyl group at the 1-position (N-position) of the pyrrole core can act as a rotor in pyrrole-based molecules, which can consume the excited energy and reduce the molecular emission in solution. TePP without the phenyl group at the 1-position can effectively enhance the emission in solution. Single-crystal analysis showed that the phenyl groups at the 2,5-positions of pyrrole extend the molecular conjugation and lock the conformation. The phenyl groups at the 3,4-positions with a twisted conformation prevent their molecules from close packing and are helpful for aggregated emission. A delicate balance between the twisting conformation and rigid conjugation takes advantage of both ACQ and AIE luminogens. The strategy can tune the AIE, ACQ, or solution and solid dual-state emission properties of pyrrole-based molecules by simply altering the position of phenyl groups, which provides a great opportunity to explore the luminescent mechanism in greater detail and to facilitate practical applications.

20.
Chemistry ; 24(2): 434-442, 2018 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-29028136

RESUMO

Eight donor-π-acceptor (D-π-A) compounds employing triphenylpyrrole isomers (TPP-1,2,5 and TPP-1,3,4) as donors, malononitrile (CN) and 1H-indene-1,3(2H)-dione (CO) as acceptors, pyridone (P) and benzopyran (B) as π-linking groups were synthesized. The compounds exhibited aggregation-induced emission and piezochromic properties. Compared with previously reported donors, triphenylpyrroles induced all the compounds to have more remarkable photophysical properties. The compounds containing TPP-1,2,5 and P moieties displayed stronger fluorescence intensities, shorter emission wavelengths, and more distinct piezochromic properties. However, the same phenomenon was observed in the TPP-1,3,4-containing system if B was as π-linker. Moreover, the CN acceptor endowed the compound to have a relatively strong fluorescent intensity, in which CO induced a relatively long emission wavelength. That is, the photophysical properties of D-π-A compounds can be controlled by adjusting the structure of donor, linker and acceptor.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA