Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Am J Pathol ; 191(10): 1717-1723, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33838127

RESUMO

Many modern histopathology laboratories are in the process of digitizing their workflows. Digitization of tissue images has made it feasible to research the augmentation or automation of clinical reporting and diagnosis. The application of modern computer vision techniques, based on deep learning, promises systems that can identify pathologies in slide images with a high degree of accuracy. Generative modeling is an approach to machine learning and deep learning that can be used to transform and generate data. It can be applied to a broad range of tasks within digital pathology, including the removal of color and intensity artifacts, the adaption of images in one domain into those of another, and the generation of synthetic digital tissue samples. This review provides an introduction to the topic, considers these applications, and discusses future directions for generative models within histopathology.


Assuntos
Aprendizado Profundo , Processamento de Imagem Assistida por Computador , Patologia , Fluxo de Trabalho , Humanos , Modelos Teóricos
2.
Stat Med ; 38(8): 1421-1441, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30488481

RESUMO

Diagnosis and prognosis of cancer are informed by the architecture inherent in cancer patient tissue sections. This architecture is typically identified by pathologists, yet advances in computational image analysis facilitate quantitative assessment of this structure. In this article, we develop a spatial point process approach to describe patterns in cell distribution within tissue samples taken from colorectal cancer (CRC) patients. In particular, our approach is centered on the Palm intensity function. This leads to taking an approximate-likelihood technique in fitting point processes models. We consider two Neyman-Scott point processes and a void process, fitting these point process models to the CRC patient data. We find that the parameter estimates of these models may be used to quantify the spatial arrangement of cells. Importantly, we observe characteristic differences in the spatial arrangement of cells between patients who died from CRC and those alive at follow up.


Assuntos
Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/patologia , Algoritmos , Interpretação Estatística de Dados , Humanos , Prognóstico
3.
J Transl Med ; 12: 156, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-24885583

RESUMO

BACKGROUND: Tumour budding (TB), lymphatic vessel density (LVD) and lymphatic vessel invasion (LVI) have shown promise as prognostic factors in colorectal cancer (CRC) but reproducibility using conventional histopathology is challenging. We demonstrate image analysis methodology to quantify the histopathological features which could permit standardisation across institutes and aid risk stratification of Dukes B patients. METHODS: Multiplexed immunofluorescence of pan-cytokeratin, D2-40 and DAPI identified epithelium, lymphatic vessels and all nuclei respectively in tissue sections from 50 patients diagnosed with Dukes A (n = 13), Dukes B (n = 29) and Dukes C (n = 8) CRC. An image analysis algorithm was developed and performed, on digitised images of the CRC tissue sections, to quantify TB, LVD, and LVI at the invasive front. RESULTS: TB (HR =5.7; 95% CI, 2.38-13.8), LVD (HR =5.1; 95% CI, 2.04-12.99) and LVI (HR =9.9; 95% CI, 3.57-27.98) were successfully quantified through image analysis and all were shown to be significantly associated with poor survival, in univariate analyses. LVI (HR =6.08; 95% CI, 1.17-31.41) is an independent prognostic factor within the study and was correlated to both TB (Pearson r =0.71, p <0.0003) and LVD (Pearson r =0.69, p <0.0003). CONCLUSION: We demonstrate methodology through image analysis which can standardise the quantification of TB, LVD and LVI from a single tissue section while decreasing observer variability. We suggest this technology is capable of stratifying a high risk Dukes B CRC subpopulation and we show the three histopathological features to be of prognostic significance.


Assuntos
Neoplasias Colorretais/patologia , Processamento de Imagem Assistida por Computador , Vasos Linfáticos/patologia , Adulto , Estudos de Coortes , Feminino , Seguimentos , Humanos , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Invasividade Neoplásica , Modelos de Riscos Proporcionais
4.
NPJ Precis Oncol ; 7(1): 77, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37582946

RESUMO

Pathologic examination of prostate biopsies is time consuming due to the large number of slides per case. In this retrospective study, we validate a deep learning-based classifier for prostate cancer (PCA) detection and Gleason grading (AI tool) in biopsy samples. Five external cohorts of patients with multifocal prostate biopsy were analyzed from high-volume pathology institutes. A total of 5922 H&E sections representing 7473 biopsy cores from 423 patient cases (digitized using three scanners) were assessed concerning tumor detection. Two tumor-bearing datasets (core n = 227 and 159) were graded by an international group of pathologists including expert urologic pathologists (n = 11) to validate the Gleason grading classifier. The sensitivity, specificity, and NPV for the detection of tumor-bearing biopsies was in a range of 0.971-1.000, 0.875-0.976, and 0.988-1.000, respectively, across the different test cohorts. In several biopsy slides tumor tissue was correctly detected by the AI tool that was initially missed by pathologists. Most false positive misclassifications represented lesions suspicious for carcinoma or cancer mimickers. The quadratically weighted kappa levels for Gleason grading agreement for single pathologists was 0.62-0.80 (0.77 for AI tool) and 0.64-0.76 (0.72 for AI tool) for the two grading datasets, respectively. In cases where consensus for grading was reached among pathologists, kappa levels for AI tool were 0.903 and 0.855. The PCA detection classifier showed high accuracy for PCA detection in biopsy cases during external validation, independent of the institute and scanner used. High levels of agreement for Gleason grading were indistinguishable between experienced genitourinary pathologists and the AI tool.

5.
PLOS Digit Health ; 1(12): e0000145, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36812609

RESUMO

For a method to be widely adopted in medical research or clinical practice, it needs to be reproducible so that clinicians and regulators can have confidence in its use. Machine learning and deep learning have a particular set of challenges around reproducibility. Small differences in the settings or the data used for training a model can lead to large differences in the outcomes of experiments. In this work, three top-performing algorithms from the Camelyon grand challenges are reproduced using only information presented in the associated papers and the results are then compared to those reported. Seemingly minor details were found to be critical to performance and yet their importance is difficult to appreciate until the actual reproduction is attempted. We observed that authors generally describe the key technical aspects of their models well but fail to maintain the same reporting standards when it comes to data preprocessing which is essential to reproducibility. As an important contribution of the present study and its findings, we introduce a reproducibility checklist that tabulates information that needs to be reported in histopathology ML-based work in order to make it reproducible.

6.
Cancers (Basel) ; 14(21)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36358805

RESUMO

Although immune checkpoint inhibitors (ICIs) have significantly improved the oncological outcomes, about one-third of patients affected by clear cell renal cell carcinoma (ccRCC) still experience recurrence. Current prognostic algorithms, such as the Leibovich score (LS), rely on morphological features manually assessed by pathologists and are therefore subject to bias. Moreover, these tools do not consider the heterogeneous molecular milieu present in the Tumour Microenvironment (TME), which may have prognostic value. We systematically developed a semi-automated method to investigate 62 markers and their combinations in 150 primary ccRCCs using Multiplex Immunofluorescence (mIF), NanoString GeoMx® Digital Spatial Profiling (DSP) and Artificial Intelligence (AI)-assisted image analysis in order to find novel prognostic signatures and investigate their spatial relationship. We found that coexpression of cancer stem cell (CSC) and epithelial-to-mesenchymal transition (EMT) markers such as OCT4 and ZEB1 are indicative of poor outcome. OCT4 and the immune markers CD8, CD34, and CD163 significantly stratified patients at intermediate LS. Furthermore, augmenting the LS with OCT4 and CD34 improved patient stratification by outcome. Our results support the hypothesis that combining molecular markers has prognostic value and can be integrated with morphological features to improve risk stratification and personalised therapy. To conclude, GeoMx® DSP and AI image analysis are complementary tools providing high multiplexing capability required to investigate the TME of ccRCC, while reducing observer bias.

7.
J Proteomics ; 266: 104684, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35842220

RESUMO

Oesophageal adenocarcinoma (OAC) is an aggressive cancer with a five-year survival of <15%. Current chemotherapeutic strategies only benefit a minority (20-30%) of patients and there are no methods available to differentiate between responders and non-responders. We performed quantitative proteomics using Sequential Window Acquisition of all THeoretical fragment-ion spectra-Mass Spectrometry (SWATH-MS) on albumin/IgG-depleted and non-depleted plasma samples from 23 patients with locally advanced OAC prior to treatment. Individuals were grouped based on tumour regression (TRG) score (TRG1/2/3 vs TRG4/5) after chemotherapy, and differentially abundant proteins were compared. Protein depletion of highly abundant proteins led to the identification of around twice as many proteins. SWATH-MS revealed significant quantitative differences in the abundance of several proteins between the two groups. These included complement c1q subunit proteins, C1QA, C1QB and C1QC, which were of higher abundance in the low TRG group. Of those that were found to be of higher abundance in the high TRG group, glutathione S-transferase pi (GSTP1) exhibited the lowest p-value and highest classification accuracy and Cohen's kappa value. Concentrations of these proteins were further examined using ELISA-based assays. This study provides quantitative information relating to differences in the plasma proteome that underpin response to chemotherapeutic treatment in oesophageal cancers. SIGNIFICANCE: Oesophageal cancers, including oesophageal adenocarcinoma (OAC) and oesophageal gastric junction cancer (OGJ), are one of the leading causes of cancer mortality worldwide. Curative therapy consists of surgery, either alone or in combination with adjuvant or neoadjuvant chemotherapy or radiation, or combination chemoradiotherapy regimens. There are currently no clinico-pathological means of predicting which patients will benefit from chemotherapeutic treatments. There is therefore an urgent need to improve oesophageal cancer disease management and treatment strategies. This work compared proteomic differences in OAC patients who responded well to chemotherapy as compared to those who did not, using quantitative proteomics prior to treatment commencement. SWATH-MS analysis of plasma (with and without albumin/IgG-depletion) from OAC patients prior to chemotherapy was performed. This approach was adopted to determine whether depletion offered a significant improvement in peptide coverage. Resultant datasets demonstrated that depletion increased peptide coverage significantly. Additionally, there was good quantitative agreement between commonly observed peptides. Data analysis was performed by adopting both univariate as well as multivariate analysis strategies. Differentially abundant proteins were identified between treatment response groups based on tumour regression grade. Such proteins included complement C1q sub-components and GSTP1. This study provides a platform for further work, utilising larger sample sets across different treatment regimens for oesophageal cancer, that will aid the development of 'treatment response prediction assays' for stratification of OAC patients prior to chemotherapy.


Assuntos
Adenocarcinoma , Neoplasias Esofágicas , Neoplasias Gástricas , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/patologia , Albuminas , Proteínas Sanguíneas/uso terapêutico , Complemento C1q/uso terapêutico , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/patologia , Humanos , Imunoglobulina G , Proteômica/métodos , Neoplasias Gástricas/patologia , Resultado do Tratamento
8.
Biochim Biophys Acta Rev Cancer ; 1876(2): 188598, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34332022

RESUMO

Oesophageal adenocarcinoma (OAC) is a disease with an incredibly poor survival rate and a complex makeup. The growth and spread of OAC tumours are profoundly influenced by their surrounding microenvironment and the properties of the tumour itself. Constant crosstalk between the tumour and its microenvironment is key to the survival of the tumour and ultimately the death of the patient. The tumour microenvironment (TME) is composed of a complex milieu of cell types including cancer associated fibroblasts (CAFs) which make up the tumour stroma, endothelial cells which line blood and lymphatic vessels and infiltrating immune cell populations. These various cell types and the tumour constantly communicate through environmental cues including fluctuations in pH, hypoxia and the release of mitogens such as cytokines, chemokines and growth factors, many of which help promote malignant progression. Eventually clusters of tumour cells such as tumour buds break away and spread through the lymphatic system to nearby lymph nodes or enter the circulation forming secondary metastasis. Collectively, these factors need to be considered when assessing and treating patients clinically. This review aims to summarise the ways in which these various factors are currently assessed and how they relate to patient treatment and outcome at an individual level.


Assuntos
Adenocarcinoma/genética , Neoplasias Esofágicas/genética , Adenocarcinoma/patologia , Neoplasias Esofágicas/patologia , Humanos , Prognóstico , Microambiente Tumoral
9.
Cancers (Basel) ; 13(7)2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33807394

RESUMO

The categorisation of desmoplastic reaction (DR) present at the colorectal cancer (CRC) invasive front into mature, intermediate or immature type has been previously shown to have high prognostic significance. However, the lack of an objective and reproducible assessment methodology for the assessment of DR has been a major hurdle to its clinical translation. In this study, a deep learning algorithm was trained to automatically classify immature DR on haematoxylin and eosin digitised slides of stage II and III CRC cases (n = 41). When assessing the classifier's performance on a test set of patient samples (n = 40), a Dice score of 0.87 for the segmentation of myxoid stroma was reported. The classifier was then applied to the full cohort of 528 stage II and III CRC cases, which was then divided into a training (n = 396) and a test set (n = 132). Automatically classed DR was shown to have superior prognostic significance over the manually classed DR in both the training and test cohorts. The findings demonstrated that deep learning algorithms could be applied to assist pathologists in the detection and classification of DR in CRC in an objective, standardised and reproducible manner.

10.
Front Physiol ; 12: 625762, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34335284

RESUMO

Podocyte loss plays a pivotal role in the pathogenesis of glomerular disease. However, the mechanisms underlying podocyte damage and loss remain poorly understood. Although detachment of viable cells has been documented in experimental Diabetic Nephropathy, correlations between reduced podocyte density and disease severity have not yet been established. YAP, a mechanosensing protein, has recently been shown to correlate with glomerular disease progression, however, the underlying mechanism has yet to be fully elucidated. In this study, we sought to document podocyte density in Diabetic Nephropathy using an amended podometric methodology, and to investigate the interplay between YAP and cytoskeletal integrity during podocyte injury. Podocyte density was quantified using TLE4 and GLEPP1 multiplexed immunofluorescence. Fourteen Diabetic Nephropathy cases were analyzed for both podocyte density and cytoplasmic translocation of YAP via automated image analysis. We demonstrate a significant decrease in podocyte density in Grade III/IV cases (124.5 per 106 µm3) relative to Grade I/II cases (226 per 106 µm3) (Student's t-test, p < 0.001), and further show that YAP translocation precedes cytoskeletal rearrangement following injury. Based on these findings we hypothesize that a significant decrease in podocyte density in late grade Diabetic Nephropathy may be explained by early cytoplasmic translocation of YAP.

11.
Cancers (Basel) ; 13(7)2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33915698

RESUMO

The clinical staging and prognosis of muscle-invasive bladder cancer (MIBC) routinely includes the assessment of patient tissue samples by a pathologist. Recent studies corroborate the importance of image analysis in identifying and quantifying immunological markers from tissue samples that can provide further insight into patient prognosis. In this paper, we apply multiplex immunofluorescence to MIBC tissue sections to capture whole-slide images and quantify potential prognostic markers related to lymphocytes, macrophages, tumour buds, and PD-L1. We propose a machine-learning-based approach for the prediction of 5 year prognosis with different combinations of image, clinical, and spatial features. An ensemble model comprising several functionally different models successfully stratifies MIBC patients into two risk groups with high statistical significance (p value < 1×10-5). Critical to improving MIBC survival rates, our method correctly classifies 71.4% of the patients who succumb to MIBC, which is significantly more than the 28.6% of the current clinical gold standard, the TNM staging system.

12.
J Pathol Inform ; 12: 6, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34012710

RESUMO

BACKGROUND: The tumor microenvironment is highly heterogeneous, and it is understood to affect tumor progression and patient outcome. A number of studies have reported the prognostic significance of tumor-infiltrating lymphocytes and tumor budding in colorectal cancer (CRC). However, the significance of the intratumoral heterogeneity present in the spatial distribution of these features within the tumor immune microenvironment (TIME) has not been previously reported. Evaluating this intratumoral heterogeneity may aid the understanding of the TIME's effect on patient prognosis as well as identify novel aggressive phenotypes which can be further investigated as potential targets for new treatment. METHODS: In this study, we propose and apply two spatial statistical methodologies for the evaluation of the intratumor heterogeneity present in the distribution of CD3 + and CD8 + lymphocytes and tumor buds (TB) in 232 Stage II CRC cases. Getis-Ord hotspot analysis was applied to quantify the cold and hotspots, defined as regions with a significantly low or high number of each feature of interest, respectively. A novel spatial heatmap methodology for the quantification of the cold and hotspots of each feature of interest, which took into account both the interpatient heterogeneity and the intratumor heterogeneity, was further developed. RESULTS: Resultant data from each analysis, characterizing the spatial intratumor heterogeneity of lymphocytes and TBs were used for the development of two new highly prognostic risk models. CONCLUSIONS: Our results highlight the value of applying spatial statistics for the assessment of the intratumor heterogeneity. Both Getis-Ord hotspot and our proposed spatial heatmap analysis are broadly applicable across other tissue types as well as other features of interest. AVAILABILITY: The code underpinning this publication can be accessed at https://doi.org/10.17630/c2306fe9-66e2-4442-ad89-f986220053e2.

13.
Front Med (Lausanne) ; 7: 419, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32974358

RESUMO

[This corrects the article on p. 264 in vol. 6, PMID: 31824952.].

14.
Virchows Arch ; 477(1): 121-130, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32388720

RESUMO

Overlapping histological features between benign and malignant lesions and a lack of firm diagnostic criteria for malignancy result in high rates of inter-observer variation in the diagnosis of melanocytic lesions. We aimed to investigate the differential expression of five miRNAs (21, 200c, 204, 205, and 211) in benign naevi (n = 42), dysplastic naevi (n = 41), melanoma in situ (n = 42), and melanoma (n = 42) and evaluate their potential as diagnostic biomarkers of melanocytic lesions. Real-time PCR showed differential miRNA expression profiles between benign naevi; dysplastic naevi and melanoma in situ; and invasive melanoma. We applied a random forest machine learning algorithm to classify cases based on their miRNA expression profiles, which resulted in a ROC curve analysis of 0.99 for malignant melanoma and greater than 0.9 for all other groups. This indicates an overall very high accuracy of our panel of miRNAs as a diagnostic biomarker of benign, dysplastic, and malignant melanocytic lesions. However, the impact of variable lesion percentage and spatial expression patterns of miRNAs on these real-time PCR results was also considered. In situ hybridisation confirmed the expression of miRNA 21 and 211 in melanocytes, while demonstrating expression of miRNA 205 only in keratinocytes, thus calling into question its value as a biomarker of melanocytic lesions. In conclusion, we have validated some miRNAs, including miRNA 21 and 211, as potential diagnostic biomarkers of benign, dysplastic, and malignant melanocytic lesions. However, we also highlight the crucial importance of considering tissue morphology and spatial expression patterns when using molecular techniques for the discovery and validation of new biomarkers.


Assuntos
Biomarcadores/análise , Síndrome do Nevo Displásico/patologia , Hiperplasia/patologia , Melanoma/genética , MicroRNAs/genética , Neoplasias Cutâneas/genética , Diagnóstico Diferencial , Síndrome do Nevo Displásico/diagnóstico , Síndrome do Nevo Displásico/metabolismo , Humanos , Hiperplasia/diagnóstico , Hiperplasia/metabolismo , Melanócitos/metabolismo , Melanócitos/patologia , Melanoma/patologia , Nevo Pigmentado/diagnóstico , Nevo Pigmentado/patologia , Neoplasias Cutâneas/patologia , Melanoma Maligno Cutâneo
15.
Virchows Arch ; 477(3): 409-420, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32107600

RESUMO

Mesothelin (MSLN) is a cell surface glycoprotein present in many cancer types. Its expression is generally associated with an unfavorable prognosis. This study examined the prognostic significance of MSLN expression in different areas of individual colorectal cancers (CRCs) using tissue microarrays (TMAs) by enrolling 314 patients with stage II (T3-T4, N0, M0) CRCs. Using formalin-fixed paraffin-embedded tissue blocks from patients, TMA blocks were constructed. Tissue core specimens were obtained from submucosal invasive front (Fr-sm), subserosal invasive front (Fr-ss), central area (Ce), and rolled edge (Ro) of each tumor. Using these four-point TMA sets, MSLN expression was immunohistochemically surveyed. The area-specific prognostic significance of MSLN expression was evaluated. A deep learning convolutional neural network algorithm was used for imaging analysis and evaluating our judgment's objectivity. MSLN staining ratio was positively correlated between the manual and machine-learning analyses (r = 0.71). The correlation coefficient between Ro and Ce, Ro and Fr-sm, and Ro and Fr-ss was r = 0.63, r = 0.54, and r = 0.61, respectively. Disease-specific survival curves for the MSLN-positive and MSLN-negative groups in Fr-sm, Fr-ss, and Ro were significantly different (five-year survival rates 88.1% and 95.5% (P = 0.024), 85.0 and 96.2% (P = 0.0087), 87.8 and 95.5% (P = 0.051), and 77.9 and 95.8% (P = 0.046) for Fr-sm, Fr-ss, Ce, and Ro, respectively). The analysis performed using area-specific four-point TMAs clearly demonstrated that MSLN expression in stage II CRC was relatively homogeneous within tumors. Additionally, high MSLN expression showed or tended to show unfavorable prognostic significance regardless of the tumor area.


Assuntos
Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Proteínas Ligadas por GPI/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Algoritmos , Biomarcadores Tumorais/metabolismo , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Neoplasias Colorretais/genética , Aprendizado Profundo , Feminino , Proteínas Ligadas por GPI/genética , Humanos , Processamento de Imagem Assistida por Computador/métodos , Masculino , Mesotelina , Pessoa de Meia-Idade , Prognóstico , Taxa de Sobrevida , Análise Serial de Tecidos/métodos
16.
J Pathol Inform ; 11: 35, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33343995

RESUMO

BACKGROUND: Clinicopathological scores are used to predict the likelihood of recurrence-free survival for patients with clear cell renal cell carcinoma (ccRCC) after surgery. These are fallible, particularly in the middle range. This inevitably means that a significant proportion of ccRCC patients who will not develop recurrent disease enroll into clinical trials. As an exemplar of using digital pathology, we sought to improve the predictive power of "recurrence free" designation in localized ccRCC patients, by precise measurement of ccRCC nuclear morphological features using computational image analysis, thereby replacing manual nuclear grade assessment. MATERIALS AND METHODS: TNM 8 UICC pathological stage pT1-pT3 ccRCC cases were recruited in Scotland and in Singapore. A Leibovich score (LS) was calculated. Definiens Tissue studio® (Definiens GmbH, Munich) image analysis platform was used to measure tumor nuclear morphological features in digitized hematoxylin and eosin (H&E) images. RESULTS: Replacing human-defined nuclear grade with computer-defined mean perimeter generated a modified Leibovich algorithm, improved overall specificity 0.86 from 0.76 in the training cohort. The greatest increase in specificity was seen in LS 5 and 6, which went from 0 to 0.57 and 0.40, respectively. The modified Leibovich algorithm increased the specificity from 0.84 to 0.94 in the validation cohort. CONCLUSIONS: CcRCC nuclear mean perimeter, measured by computational image analysis, together with tumor stage and size, node status and necrosis improved the accuracy of predicting recurrence-free in the localized ccRCC patients. This finding was validated in an ethnically different Singaporean cohort, despite the different H and E staining protocol and scanner used. This may be a useful patient selection tool for recruitment to multicenter studies, preventing some patients from receiving unnecessary additional treatment while reducing the number of patients required to achieve adequate power within neoadjuvant and adjuvant clinical studies.

17.
NPJ Digit Med ; 3: 71, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32435699

RESUMO

Cellular subpopulations within the colorectal tumor microenvironment (TME) include CD3+ and CD8+ lymphocytes, CD68+ and CD163+ macrophages, and tumor buds (TBs), all of which have known prognostic significance in stage II colorectal cancer. However, the prognostic relevance of their spatial interactions remains unknown. Here, by applying automated image analysis and machine learning approaches, we evaluate the prognostic significance of these cellular subpopulations and their spatial interactions. Resultant data, from a training cohort retrospectively collated from Edinburgh, UK hospitals (n = 113), were used to create a combinatorial prognostic model, which identified a subpopulation of patients who exhibit 100% survival over a 5-year follow-up period. The combinatorial model integrated lymphocytic infiltration, the number of lymphocytes within 50-µm proximity to TBs, and the CD68+/CD163+ macrophage ratio. This finding was confirmed on an independent validation cohort, which included patients treated in Japan and Scotland (n = 117). This work shows that by analyzing multiple cellular subpopulations from the complex TME, it is possible to identify patients for whom surgical resection alone may be curative.

18.
Front Med (Lausanne) ; 6: 264, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31824952

RESUMO

The widespread adoption of whole slide imaging has increased the demand for effective and efficient gigapixel image analysis. Deep learning is at the forefront of computer vision, showcasing significant improvements over previous methodologies on visual understanding. However, whole slide images have billions of pixels and suffer from high morphological heterogeneity as well as from different types of artifacts. Collectively, these impede the conventional use of deep learning. For the clinical translation of deep learning solutions to become a reality, these challenges need to be addressed. In this paper, we review work on the interdisciplinary attempt of training deep neural networks using whole slide images, and highlight the different ideas underlying these methodologies.

19.
Cancer Immunol Res ; 7(4): 609-620, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30846441

RESUMO

Both immune profiling and tumor budding significantly correlate with colorectal cancer patient outcome but are traditionally reported independently. This study evaluated the association and interaction between lymphocytic infiltration and tumor budding, coregistered on a single slide, in order to determine a more precise prognostic algorithm for patients with stage II colorectal cancer. Multiplexed immunofluorescence and automated image analysis were used for the quantification of CD3+CD8+ T cells, and tumor buds (TBs), across whole slide images of three independent cohorts (training cohort: n = 114, validation cohort 1: n = 56, validation cohort 2: n = 62). Machine learning algorithms were used for feature selection and prognostic risk model development. High numbers of TBs [HR = 5.899; 95% confidence interval (CI) 1.875-18.55], low CD3+ T-cell density (HR = 9.964; 95% CI, 3.156-31.46), and low mean number of CD3+CD8+ T cells within 50 µm of TBs (HR = 8.907; 95% CI, 2.834-28.0) were associated with reduced disease-specific survival. A prognostic signature, derived from integrating TBs, lymphocyte infiltration, and their spatial relationship, reported a more significant cohort stratification (HR = 18.75; 95% CI, 6.46-54.43), than TBs, Immunoscore, or pT stage. This was confirmed in two independent validation cohorts (HR = 12.27; 95% CI, 3.524-42.73; HR = 15.61; 95% CI, 4.692-51.91). The investigation of the spatial relationship between lymphocytes and TBs within the tumor microenvironment improves accuracy of prognosis of patients with stage II colorectal cancer through an automated image analysis and machine learning workflow.


Assuntos
Neoplasias Colorretais/imunologia , Linfócitos do Interstício Tumoral/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias Colorretais/mortalidade , Feminino , Humanos , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Prognóstico
20.
Sci Rep ; 9(1): 5174, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30914794

RESUMO

Tumour budding has been described as an independent prognostic feature in several tumour types. We report for the first time the relationship between tumour budding and survival evaluated in patients with muscle invasive bladder cancer. A machine learning-based methodology was applied to accurately quantify tumour buds across immunofluorescence labelled whole slide images from 100 muscle invasive bladder cancer patients. Furthermore, tumour budding was found to be correlated to TNM (p = 0.00089) and pT (p = 0.0078) staging. A novel classification and regression tree model was constructed to stratify all stage II, III, and IV patients into three new staging criteria based on disease specific survival. For the stratification of non-metastatic patients into high or low risk of disease specific death, our decision tree model reported that tumour budding was the most significant feature (HR = 2.59, p = 0.0091), and no clinical feature was utilised to categorise these patients. Our findings demonstrate that tumour budding, quantified using automated image analysis provides prognostic value for muscle invasive bladder cancer patients and a better model fit than TNM staging.


Assuntos
Aprendizado de Máquina , Músculos/patologia , Neoplasias da Bexiga Urinária/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Automação , Estudos de Coortes , Árvores de Decisões , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Prognóstico , Modelos de Riscos Proporcionais , Análise de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA