Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
J Immunol ; 209(11): 2215-2226, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36426979

RESUMO

Nasal immunity is an ancient and conserved arm of the mucosal immune system in vertebrates. In teleost fish, we previously reported the presence of a nasopharynx-associated lymphoid tissue (NALT) characterized by scattered immune cells located in the trout olfactory lamellae. This diffuse NALT mounts innate and adaptive immune responses to nasal infection or vaccination. In mammals, lymphoid structures such as adenoids and tonsils support affinity maturation of the adaptive immune response in the nasopharyngeal cavity. These structures, known as organized NALT (O-NALT), have not been identified in teleost fish to date, but their evolutionary forerunners exist in sarcopterygian fish. In this study, we report that the rainbow trout nasal cavity is lined with a lymphoepithelium that extends from the most dorsal opening of the nares to the ventral nasal cavity. Within the nasal lymphoepithelium we found lymphocyte aggregates called O-NALT in this study that are composed of ∼ 56% CD4+, 24% IgM+, 16% CD8α+, and 4% IgT+ lymphocytes and that have high constitutive aicda mRNA expression. Intranasal (i.n.) vaccination with live attenuated infectious hematopoietic necrosis virus triggers expansions of B and T cells and aicda expression in response to primary i.n. vaccination. IgM+ B cells undergo proliferation and apoptosis within O-NALT upon prime but not boost i.n. vaccination. Our results suggest that novel mucosal microenvironments such as O-NALT may be involved in the affinity maturation of the adaptive immune response in early vertebrates.


Assuntos
Tonsila Faríngea , Mucosa Gástrica , Animais , Centro Germinativo , Mamíferos , Biomarcadores , Imunoglobulina M
2.
J Fish Dis ; : e13958, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38837770

RESUMO

A mouse monoclonal antibody (mAb FL100A) previously prepared against Flavobacterium psychrophilum (Fp) CSF259-93 has now been examined for binding to lipopolysaccharides (LPS) of this strain and Fp 950106-1/1. The corresponding O-polysaccharides (O-PS) of these strains are formed by identical trisaccharide repeats composed of l-Rhamnose (l-Rha), 2-acetamido-2-deoxy-l-fucose (l-FucNAc) and 2-acetamido-4-R1-2,4-dideoxy-d-quinovose (d-Qui2NAc4NR1) where R1 represents a dihydroxyhexanamido moiety. The O-PS loci of these strains are also identical except for the gene (wzy1 or wzy2) that encodes the polysaccharide polymerase. Accordingly, adjacent O-PS repeats are joined through d-Qui2NAc4NR1 and l-Rha by wzy2-dependent α(1-2) linkages in Fp CSF259-93 versus wzy1-dependent ß(1-3) linkages in Fp 950106-1/1. mAb FL100A reacted strongly with Fp CSF259-93 O-PS and LPS but weakly or not at all with Fp 950106-1/1 LPS and O-PS. Importantly, it also labelled cell surface blebs on the former but not the latter strain. Additionally, mAb binding was approximately 5-times stronger to homologous Fp CSF259-93 LPS than to LPS from a strain with a different R-group gene. A conformational epitope for mAb FL100A binding was suggested from molecular dynamic simulations of each O-PS. Thus, Fp CSF259-93 O-PS formed a stable well-defined compact helix in which the R1 groups were displayed in a regular pattern on the helix exterior while unreactive Fp 950106-1/1 O-PS adopted a flexible extended linear conformation. Taken together, the findings establish the specificity of mAb FL100A for Wzy2-linked F. psychrophilum O-PS and LPS.

3.
Fish Shellfish Immunol ; 137: 108775, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37105427

RESUMO

Burbot (Lota lota) are an ideal candidate for cool or cold-water aquaculture and are gaining interest because of their high economic value, low temperature requirements, and fast growth rate. Limited information exists on the innate and adaptive immune systems of this species. This is partly due to the lack of species-specific tools to determine antibody responses following disease or vaccination or to characterize the immune response in general. An anti-IgM monoclonal antibody (mAb 27C) was developed and characterized via enzyme-linked immunosorbent assay (ELISA) and Western blot for species specificity, affinity to the heavy chain of burbot IgM, and cross-reactivity to other reagents used in the analysis. The 27C monoclonal antibody was further utilized to develop an ELISA protocol to measure the specific antibody response of burbot following exposure to two pathogenic strains of Aeromonas sp. (A141 and IR004). This ELISA confirmed that vaccinated burbot that survived the challenge with either strain developed statistically higher titers of anti-Aeromonas antibodies specific for the relative strain when compared to fish that were not vaccinated or challenged. Western blot analysis further demonstrated that burbot surviving challenge had serum IgM that recognized distinct antigens specific to the strain they were challenged with, A141 bound to antigens in the 50-250Kda range and IR004 bound to a distinct 150Kda antigen. Western blots further indicated that each strain shared antigenic regions regardless of experimental Aeromonas strain exposure. Finally, immunofluorescent staining confirmed that mAb 27C binds to membrane-bound IgM (presumably B cells) on burbot head kidney cells. Taken together, results from this study demonstrate that mAb 27C specifically recognized burbot IgM and will be an important tool to further characterize the adaptive and cellular immune responses of this fish species.


Assuntos
Aeromonas , Gadiformes , Animais , Anticorpos Monoclonais , Peixes , Ensaio de Imunoadsorção Enzimática/veterinária
4.
Fish Shellfish Immunol ; 137: 108749, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37062435

RESUMO

Infectious hematopoietic necrosis (IHN) is a significant viral disease affecting salmonids, whereas Flavobacterium psychrophilum (Fp), the causative agent of bacterial coldwater disease (BCWD), remains one of the most significant bacterial pathogens of salmonids. We explored maternal immunity in the context of IHN and BCWD management in rainbow trout (Oncorhynchus mykiss) aquaculture. Two experimental trials were conducted where different groups of female broodstock were immunized prior to spawning with an IHNV DNA vaccine or a live attenuated F. psychrophilum (Fp B.17-ILM) vaccine alone, or in combination. Progeny were challenged with either a low or high dose of IHNV at 13 days post hatch (dph) and 32 dph or challenged with F. psychrophilum at 13 dph. Mortality following a low-dose IHNV challenge at 13 dph was significantly lower in progeny from vaccinated broodstock vs. unvaccinated broodstock, but no significant differences were observed at 32 dph. Mortality due to BCWD was also significantly reduced in 13 dph fry that originated from broodstock immunized with the Fp B.17-ILM vaccine. After vaccination broodstock developed specific or neutralizing antibodies respectively to F. psychrophilum and IHNV; however, antibody titers in eggs and fry were undetectable. In the eggs and fry mRNA transcripts of the complement components C3 and C5 were detected at much higher levels in progeny from vaccinated broodstock and showed a significantly increased and rapid response post-challenge compared with unvaccinated broodstock. After challenges pro-inflammatory cytokine expression was immediately and considerably elevated in the fry from vaccinated broodstock vs. unvaccinated broodstock, whereas adaptive immune genes were elevated to a lesser degree. Results suggest that maternal transfer of innate and adaptive factors at the transcript level occurred because development of lymphomyeloid organs is not complete in such young fry. In addition to documenting maternally derived immunity in teleosts, this study demonstrates that broodstock vaccination can confer some degree of protection to progeny against viral and bacterial pathogens.


Assuntos
Doenças dos Peixes , Infecções por Flavobacteriaceae , Vírus da Necrose Hematopoética Infecciosa , Oncorhynchus mykiss , Infecções por Rhabdoviridae , Vacinas de DNA , Feminino , Animais , Infecções por Flavobacteriaceae/prevenção & controle , Infecções por Flavobacteriaceae/veterinária , Flavobacterium , Vacinação/veterinária
5.
J Aquat Anim Health ; 35(1): 34-40, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36367349

RESUMO

OBJECTIVE: Renibacterium salmoninarum is a pathogenic gram-positive bacterium and is the causative agent of bacterial kidney disease (BKD), a malady that mainly impacts salmonid species. Experimental challenges were conducted to assess the virulence and challenge route for select R. salmoninarum strains (CK-90 and ATCC 33739) in Rainbow Trout Oncorhynchus mykiss. METHODS: The CK-90 strain was intracoelomically injected (100 µL) at a high dose containing 4.80 × 106 CFU/g of fish (optical density at 525 nm [OD525 ] = 1.779) and a low dose containing 6.86 × 105 CFU/g of fish (OD525  = 1.077); alternatively, fish were immersed in a solution containing 4.5 × 107 CFU/mL of fish (OD525  = 0.886). The ATCC 33739 strain (originating from Brook Trout Salvelinus fontinalis) was also included and intracoelomically injected at 3.58 × 105 CFU/g of fish (OD525  = 1.431) to discern differences in virulence between the strains. RESULT: Clinical signs of BKD manifested at approximately 10 d postchallenge, and mortalities began at 19 days postchallenge. To confirm infection and quantify R. salmoninarum antigen load, an enzyme-linked immunosorbent assay (ELISA) was conducted using kidney tissue collected after the challenge. Rainbow Trout that were challenged with CK-90 by injection (both high- and low-dose groups) exhibited significantly higher mortality than fish that were injected with ATCC 33739 or those that were exposed to CK-90 via immersion challenge. The R. salmoninarum p57 (57-kDa protein) antigen was confirmed via ELISA. Antigen load for fish injected with CK-90 (high dose: OD405  = 0.71; low dose: OD405  = 0.66) was significantly higher than that for fish injected with ATCC 33739 (OD405  = 0.34). The CK-90 strain (both high and low doses) was more virulent than ATCC 33739, which caused no mortalities over the 28-days trial. Although there were no mortalities among ATCC 33739 fish, the ELISA confirmed that the R. salmoninarum antigen infiltrated kidney tissue in those fish. CONCLUSION: The immersion challenge methodology for R. salmoninarum CK-90 was ineffective for inducing mortalities at the examined dose.


Assuntos
Doenças dos Peixes , Infecções por Bactérias Gram-Positivas , Nefropatias , Micrococcaceae , Oncorhynchus mykiss , Animais , Imersão , Infecções por Bactérias Gram-Positivas/veterinária , Infecções por Bactérias Gram-Positivas/microbiologia , Nefropatias/veterinária , Doenças dos Peixes/microbiologia
6.
Fish Shellfish Immunol ; 130: 479-489, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36162774

RESUMO

Sablefish (Anoplopoma fimbria) are an emerging aquaculture species native to the continental shelf of the northern Pacific Ocean. There is limited information on both innate and adaptive immunity for this species and new tools are needed to determine antibody response following vaccination or disease outbreaks. In this paper, a monoclonal antibody, UI-25A, specific to sablefish IgM was produced in mice. Western blotting confirmed UI-25A recognizes the heavy chain of IgM and does not cross react to proteins or carbohydrates in serum of four other teleost species. An ELISA was developed to measure Aeromonas salmonicida specific IgM in the plasma of sablefish from a previous experiment where fish were immunized with a proprietary A. salmonicida vaccine. UI-25A was used in Western blot analyses to identify immunogenic regions of A. salmonicida recognized by this specific IgM from vaccinated sablefish. Immunofluorescent staining also demonstrated the ability of UI-25A to recognize membrane-bound IgM and identify IgM + cells in the head kidney. These results demonstrate the usefulness of UI-25A as a tool to improve the understanding of antibody-mediated immunity in sablefish as well as to provide valuable information for vaccine development and expansion of aquaculture efforts for this fish species.


Assuntos
Anticorpos Monoclonais , Perciformes , Animais , Anticorpos Monoclonais/metabolismo , Western Blotting , Carboidratos , Ensaio de Imunoadsorção Enzimática/veterinária , Peixes/metabolismo , Imunoglobulina M/metabolismo , Camundongos , Coloração e Rotulagem
7.
J Fish Dis ; 44(7): 949-960, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33591637

RESUMO

Iron is essential for growth and virulence in most pathogenic bacterial strains. In some cases, the hosts for these pathogenic bacteria develop specialized strategies to sequester iron and limit infectivity. This in turn may result in the invading pathogens utilizing high-affinity iron transport mechanisms, such as the use of iron-chelating siderophores, to extend beyond the host defences. Flavobacterium psychrophilum, the causative agent of bacterial coldwater disease (BCWD) in salmonids, relies on iron metabolism for infectivity, and the genome of the model CSF-259-93 strain has recently been made available. Further, this strain serves as a parent strain for a live-attenuated vaccine strain, B.17, which has been shown to provide rainbow trout with protection against BCWD. To elucidate specific gene expression responses to iron metabolism and compare strain differences, both F. psychrophilum strains were grown under iron-limiting conditions and 26 genes related to iron metabolism were mapped for 96 hr in culture via qPCR analyses. Results indicate increased production of the ferrous iron transport protein B (FITB; p =.008), and ferric receptor CfrA (FR 1; p =.012) in the wild-type CSF-259-93 strain at 72 hr and 96 hr post-exposure to iron-limiting media. In the B.17 vaccine strain, siderophore synthase (SS) expression was found to be downregulated at 72 hr, in comparison with 0h (p =.018). When strains were compared, FITB (p =.021), FR1 (p =.009) and SS (p =.016) were also elevated in B.17 at 0 hr and TonB outer protein membrane receptor 1 (TBomr1; p =.005) had a lower expression at 96 hr. Overall, this study demonstrated strain-related gene expression changes in only a fraction of the iron metabolism genes tested; however, results provide insight on potential virulence mechanisms and clarification on iron-related gene expression for F. psychrophilum.


Assuntos
Proteínas de Bactérias/metabolismo , Flavobacterium/metabolismo , Flavobacterium/patogenicidade , Regulação Bacteriana da Expressão Gênica/fisiologia , Ferro/metabolismo , Proteínas de Bactérias/genética , Virulência
8.
J Fish Dis ; 44(5): 645-653, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33565105

RESUMO

Salmonid diseases caused by infections of Flavobacterium psychrophilum, the causative agent of bacterial coldwater disease, remain difficult to manage as novel, pathogenic strains continue to emerge in aquaculture settings globally. To date, much of the research regarding treatment options and vaccine development has focused on rainbow trout (Oncorhynchus mykiss), but other inland-reared salmonids are also impacted by this Gram-negative bacterium. As such, Atlantic salmon (Salmo salar) and brook trout (Salvelinus fontinalis) were injection-challenged with a variety of previously reported F. psychrophilum strains isolated from disease diagnostic cases in salmonids, as well as a standard and well-studied F. psychrophilum strain (CSF 259-93) known to be virulent in rainbow trout. In three separate virulence assessments (Trials A, B and C), strains US063 (isolated from lake trout; Salvelinus namaycush) and US149 (isolated from Atlantic salmon) caused a significantly higher cumulative per cent mortality (CPM) relative to other strains in Atlantic salmon (p <.001 for all trials), with US149 causing significantly greater mortality than US063 in Trials A (CPM 97% vs. 65%, p =.008) and B (CPM 96% ± 2.3% vs. 81.33% ± 4.8%, p =.014). Trial C used a lower dose (1.86 × 108  CFU/mL) for US149, resulting in a lower mortality (78.67% ± 9.33%) relative to Trials A and B. CSF259-93 did not cause significant mortality in any trials. In brook trout, the strain 03-179 (originally isolated from steelhead trout; Oncorhynchus mykiss) was significantly more virulent than any other (CPM 100% ± 0%, p <.001), followed by US063 (73% ± 3.8%) and US149 (40% ± 6.1%,) respectively. Again, CSF259-93 did not cause significant mortality relative to a mock challenge treatment. Results provide information about the applicability of strain selection in F. psychrophilum virulence testing in Atlantic salmon and brook trout, demonstrating the high virulence of US063 and US149 for these salmonid species. This information is applicable for the development of therapeutics and vaccines against F. psychrophilum infections and demonstrates the reproducibility of the experimental challenge model.


Assuntos
Doenças dos Peixes/mortalidade , Infecções por Flavobacteriaceae/veterinária , Flavobacterium/fisiologia , Salmo salar , Truta , Animais , Doenças dos Peixes/microbiologia , Infecções por Flavobacteriaceae/microbiologia , Infecções por Flavobacteriaceae/mortalidade
9.
J Fish Dis ; 43(8): 915-928, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32557714

RESUMO

For salmonid producers, a common threat is Flavobacterium psychrophilum. Recent advancements in bacterial coldwater disease (BCWD) management include the development of a live-attenuated immersion vaccine that cross-protects against an array of F. psychrophilum strains. Emerging family Flavobacteriaceae cases associated with clinical disease have been increasing, including pathogenic isolates of Flavobacterium spp. and Chryseobacterium spp. The cross-protective ability of a live-attenuated F. psychrophilum vaccine was determined against three virulent Flavobacteriaceae isolates. Juvenile rainbow trout were vaccinated, developed high F. psychrophilum-specific antibody titres and were challenged with Chryseobacterium spp. isolates (S25 and T28), a Flavobacterium sp. (S21) isolate, a mixed combination of S21:S25:T28, and a standard virulent F. psychrophilum CSF259-93 strain. Results demonstrated strong protection in the CSF259-93 vaccinated group (relative per cent survival (RPS)=94.44%) when compared to the relevant CSF259-93 controls (p < .001). Protection was also observed for vaccinated fish challenged with the S21:S25:T28 mix (RPS = 85.18%; p < .001). However, protection was not observed with the S21, S25 or T28 isolates alone. Analysis of whole-cell lysates revealed differences in protein banding by SDS-PAGE, but conserved antigenic regions by Western blot in S25 and T28. Results demonstrate that this live-attenuated vaccine provided protection against mixed flavobacterial infection and suggest further benefits against flavobacteriosis.


Assuntos
Vacinas Bacterianas/imunologia , Chryseobacterium/imunologia , Infecções por Flavobacteriaceae/veterinária , Flavobacterium/imunologia , Oncorhynchus mykiss , Animais , Anticorpos Antibacterianos/imunologia , Proteção Cruzada/imunologia , Doenças dos Peixes/imunologia , Doenças dos Peixes/microbiologia , Infecções por Flavobacteriaceae/imunologia , Infecções por Flavobacteriaceae/microbiologia , Imersão , Vacinas Atenuadas/imunologia
10.
J Fish Dis ; 43(8): 839-851, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32618015

RESUMO

Burbot (Lota lota maculosa) are a potential new species for commercial aquaculture. As burbot culture expands, there is a need to further define pathogen susceptibility and characterize aspects of the burbot immune response in an effort to assess fish health. A recent clinical diagnostic case from juvenile burbot reared at a commercial production facility resulted in the isolation and identification of Flavobacterium columnare along with several Aeromonas spp. The F. columnare isolate was assigned to genetic group 1 via multiplex PCR, a genetic group commonly associated with columnaris disease cases in rainbow trout (Oncorhynchus mykiss). Virulence of the F. columnare isolate was assessed in vivo in both juvenile burbot and rainbow trout. Additionally, several of the Aeromonas sp. case isolates were identified via sequencing (16S rRNA, gyrB and rpoD) and a putative A. sobria isolate (BI-3) was used to challenge burbot, along with a known virulent Aeromonas sp. (A141), but BI-3 was not found to be virulent. Burbot were refractory to F. columnare when challenged by immersion, and it is likely that this is a secondary pathogen for burbot. Although refractory in burbot, the identified F. columnare isolate (BI-1) was found to be virulent in rainbow trout.


Assuntos
Aeromonas/fisiologia , Doenças dos Peixes/microbiologia , Infecções por Flavobacteriaceae/veterinária , Flavobacterium/fisiologia , Gadiformes , Infecções por Bactérias Gram-Negativas/veterinária , Animais , Infecções por Flavobacteriaceae/microbiologia , Infecções por Bactérias Gram-Negativas/microbiologia , Reação em Cadeia da Polimerase Multiplex/veterinária , Análise de Sequência de RNA/veterinária
11.
Appl Environ Microbiol ; 85(6)2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30658978

RESUMO

Flavobacterium psychrophilum, the etiological agent of bacterial coldwater disease (BCWD) and rainbow trout fry syndrome (RTFS), causes significant economic losses in salmonid aquaculture, particularly in rainbow trout (Oncorhynchus mykiss). Prior studies have used multilocus sequence typing (MLST) to examine genetic heterogeneity within F. psychrophilum At present, however, its population structure in North America is incompletely understood, as only 107 isolates have been genotyped. Herein, MLST was used to investigate the genetic diversity of an additional 314 North American F. psychrophilum isolates that were recovered from ten fish host species from 20 U.S. states and 1 Canadian province over nearly four decades. These isolates were placed into 66 sequence types (STs), 47 of which were novel, increasing the number of clonal complexes (CCs) in North America from 7 to 12. Newly identified CCs were diverse in terms of host association, distribution, and association with disease. The largest F. psychrophilum CC identified was CC-ST10, within which 10 novel genotypes were discovered, most of which came from O. mykiss experiencing BCWD. This discovery, among others, provides evidence for the hypothesis that ST10 (i.e., the founding ST of CC-ST10) originated in North America. Furthermore, ST275 (in CC-ST10) was recovered from wild/feral adult steelhead and marks the first recovery of CC-ST10 from wild/feral fish in North America. Analyses also revealed that at the allele level, the diversification of F. psychrophilum in North America is driven three times more frequently by recombination than random nucleic acid mutation, possibly indicating how new phenotypes emerge within this species.IMPORTANCEFlavobacterium psychrophilum is the causative agent of bacterial coldwater disease (BCWD) and rainbow trout fry syndrome (RTFS), both of which cause substantial losses in farmed fish populations worldwide. To better prevent and control BCWD and RTFS outbreaks, we sought to characterize the genetic diversity of several hundred F. psychrophilum isolates that were recovered from diseased fish across North America. Results highlighted multiple F. psychrophilum genetic strains that appear to play an important role in disease events in North American aquaculture facilities and suggest that the practice of trading fish eggs has led to the continental and transcontinental spread of this bacterium. The knowledge generated herein will be invaluable toward guiding the development of future disease prevention techniques.


Assuntos
Doenças dos Peixes/microbiologia , Infecções por Flavobacteriaceae/veterinária , Flavobacterium/isolamento & purificação , Animais , Aquicultura , Canadá/epidemiologia , Doenças dos Peixes/epidemiologia , Infecções por Flavobacteriaceae/epidemiologia , Infecções por Flavobacteriaceae/microbiologia , Flavobacterium/classificação , Flavobacterium/genética , Genótipo , Tipagem de Sequências Multilocus , Oncorhynchus mykiss/microbiologia , Filogenia
12.
J Fish Dis ; 42(7): 1065-1076, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31074078

RESUMO

Co-infection of rainbow trout with infections haematopoietic necrosis virus (IHNV) and Flavobacterium psychrophilum is known to occur, and it has been speculated that a combined infection can result in dramatic losses. Both pathogens can persist in fish in an asymptomatic carrier state, but the impact of co-infection has not been well characterized or documented. In this study, it was hypothesized that fish co-infected with F. psychrophilum and IHNV would exhibit greater mortality than fish infected with either pathogen alone. To test this, juvenile rainbow trout were co-infected with low doses of either IHNV or F. psychrophilum, and at 2 days post-initial challenge, they were given a low dose of the reciprocal pathogen. This combined infection caused high mortality (76.2%-100%), while mortality from a single pathogen infection with the same respective dose was low (5%-20%). The onset of mortality was earlier in the co-infected group (3-4 days) when compared with fish infected with F. psychrophilum alone (6 days) or IHNV (5 days), confirming the synergistic interaction between both pathogens. Co-infection led to a significant increase in the number of F. psychrophilum colony-forming units and IHNV plaque-forming units within tissues. This finding confirms that when present together in co-infected fish, both pathogens are more efficiently recovered from tissues. Furthermore, pathogen genes were significantly increased in co-infected groups, which parallel the findings of increased systemic pathogen load. Extensive tissue necrosis and abundant pathogen present intracellularly and extracellularly in haematopoietic tissue. This was pronounced in co-infected fish and likely contributed to the exacerbated clinical signs and higher mortality. This study provides novel insight into host-pathogen interactions related to co-infection by aquatic bacterial and viral pathogens and supports our hypothesis. Such findings confirm that mortality in fish exposed to both pathogens is greatly elevated compared to a single pathogen infection.


Assuntos
Coinfecção/veterinária , Infecções por Flavobacteriaceae/veterinária , Interações Hospedeiro-Patógeno , Oncorhynchus mykiss/microbiologia , Oncorhynchus mykiss/virologia , Infecções por Rhabdoviridae/veterinária , Animais , Infecções Assintomáticas , Coinfecção/mortalidade , Doenças dos Peixes/microbiologia , Doenças dos Peixes/mortalidade , Doenças dos Peixes/virologia , Flavobacterium/genética , Flavobacterium/patogenicidade , Vírus da Necrose Hematopoética Infecciosa/patogenicidade , Células-Tronco
13.
J Fish Dis ; 42(1): 75-84, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30370695

RESUMO

Bacterial coldwater disease, caused by Flavobacterium psychrophilum, remains one of the most significant bacterial diseases of salmonids worldwide. A previously developed and reported live-attenuated immersion vaccine (F. psychrophilum; B.17-ILM) has been shown to confer significant protection to salmonids. To further characterize this vaccine, a series of experiments were carried out to determine the cross-protective efficacy of this B.17-ILM vaccine against 9 F. psychrophilum isolates (representing seven sequence types/three clonal complexes as determined by multilocus sequence typing) in comparison with a wild-type virulent strain, CSF-259-93. To assess protection, 28-day experimental challenges of rainbow trout (Oncorhynchus mykiss) fry were conducted following immersion vaccinations with the B.17-ILM vaccine. F. psychrophilum strains used in challenge trials were isolated from several fish species across the globe; however, all were found to be virulent in rainbow trout. The B.17-ILM vaccine provided significant protection against all strains, with relative percent survival values ranging from 51% to 72%. All vaccinated fish developed an adaptive immune response (as measured by F. psychrophilum-specific antibodies) that increased out to the time of challenge (8 weeks postimmunization). Previous studies have confirmed that antibody plays an important role in protection against F. psychrophilum challenge; therefore, specific antibodies to the B.17-ILM vaccine strain appear to contribute to the cross-protection observed to heterologous strain. The ability of such antibodies to bind to similar antigenic regions for all strains was confirmed by western blot analyses. Results presented here support the practical application of this live-attenuated vaccine, and suggest that it will be efficacious even in aquaculture operations affected by diverse strains of F. psychrophilum.


Assuntos
Vacinas Bacterianas/imunologia , Proteção Cruzada , Doenças dos Peixes/prevenção & controle , Infecções por Flavobacteriaceae/veterinária , Vacinas Atenuadas/imunologia , Animais , Anticorpos Antibacterianos/imunologia , Vacinas Bacterianas/administração & dosagem , Doenças dos Peixes/imunologia , Doenças dos Peixes/microbiologia , Infecções por Flavobacteriaceae/imunologia , Infecções por Flavobacteriaceae/microbiologia , Infecções por Flavobacteriaceae/prevenção & controle , Flavobacterium/classificação , Oncorhynchus mykiss/imunologia , Vacinas Atenuadas/administração & dosagem
14.
J Aquat Anim Health ; 30(3): 201-209, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29799641

RESUMO

In response to population declines of North American Burbot Lota lota maculosa (hereafter, Burbot), conservation aquaculture methods have been developed for this species. In general, Burbot are relatively resistant to many salmonid pathogens; however, cultured juvenile Burbot have experienced periodic epizootic disease outbreaks during production. A series of trials was conducted to determine the virulence of select bacteria isolated from juvenile Burbot after outbreaks that occurred in 2012 and 2013 at the University of Idaho's Aquaculture Research Institute. Initial clinical diagnostics and sampling resulted in the isolation of numerous putative bacterial pathogens. To determine which bacteria were the most likely causative agents contributing to these epizootics, juvenile Burbot received intraperitoneal (IP) injections of select bacteria in log-phase growth. Mortality associated with specific isolates was recorded, and more comprehensive challenges followed this initial screening. These challenges used side-by-side IP and immersion methods to expose Burbot to potential pathogens. The challenges resulted in significantly higher mortalities in fish after IP injection with two Aeromonas sp. isolates compared to controls, but no significant difference in mortality for immersion-challenged groups was observed. Results demonstrate that two Aeromonas sp. isolates cultured from the epizootics are virulent to Burbot.


Assuntos
Aeromonas/fisiologia , Aeromonas/patogenicidade , Doenças dos Peixes/microbiologia , Gadiformes , Infecções por Bactérias Gram-Negativas/veterinária , Aeromonas/isolamento & purificação , Animais , Bactérias/isolamento & purificação , Bactérias/patogenicidade , Doenças dos Peixes/epidemiologia , Infecções por Bactérias Gram-Negativas/epidemiologia , Infecções por Bactérias Gram-Negativas/microbiologia
15.
J Aquat Anim Health ; 30(4): 302-311, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30269364

RESUMO

Advances in technology are making it easier for rapid field detection of microbes in aquaculture. Specifically, real-time quantitative PCR (qPCR) analysis, which has traditionally been confined to laboratory-based protocols, is now available in a handheld, field-portable system. The feasibility of using the Biomeme handheld qPCR system for rapid (<50 min) on-site detection and monitoring of Flavobacterium psychrophilum from filtered water samples was evaluated. Paired water samples were collected over a 23-d period from microcosm tanks that housed fish injected with known levels of F. psychrophilum. Water samples were filtered through 0.45-µm nitrocellulose filters and were analyzed with both the Biomeme qPCR platform and a traditional bench qPCR protocol. The two methods identified similar fluctuations in F. psychrophilum DNA throughout the study. Standard curves relating quantification cycles to the number of F. psychrophilum colony-forming units (CFU) were constructed and analyzed; results indicated that CFU increased rapidly between days 6 and 8 of the trial and then progressively decreased during the remaining 15 d. Average calculated log10 (CFU/mL) values were significantly correlated between the two platforms. Rapid, field-based qPCR can be incorporated into daily water quality monitoring protocols to help detect and monitor microbes in aquaculture systems.


Assuntos
Infecções por Flavobacteriaceae/veterinária , Flavobacterium/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Microbiologia da Água , Animais , DNA Bacteriano/análise , Doenças dos Peixes/microbiologia , Infecções por Flavobacteriaceae/microbiologia , Flavobacterium/genética , Oncorhynchus mykiss , Reação em Cadeia da Polimerase em Tempo Real/instrumentação , Reação em Cadeia da Polimerase em Tempo Real/métodos
16.
Fish Shellfish Immunol ; 56: 169-180, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27403595

RESUMO

This study was aimed at optimizing the efficacy of a recently developed live attenuated immersion vaccine (B.17-ILM) as a promising vaccine against bacterial coldwater disease (BCWD) caused by Flavobacterium psychrophilum in salmonids. Rainbow trout (RBT) fry were vaccinated by immersion, and different parameters affecting vaccination such as fish size, vaccine delivery time, dose, duration of protection, booster regimes and vaccine growth incubation time were optimized. Specific anti-F. psychrophilum immune response was determined by ELISA. Protective efficacy was determined by challenging with a virulent strain of F. psychrophilum (CSF-259-93) and calculating cumulative percent mortality (CPM) and relative percent survival (RPS). All vaccinated fish developed significantly higher levels of serum antibody titers by week 8 when compared to their respective controls. Immersion vaccination for 3, 6 and 30 min produced significant protection with comparable RPS values of 47%, 53% and 52%, respectively. This vaccine provided significant protection for fish as small as 0.5 g with an RPS of 55%; larger fish of 1 g and 2 g yielded slightly higher RPS values of 59% and 60%, respectively. Fish vaccinated with higher vaccine doses of ∼10(10) and 10(8) colony forming units mL(-1) (cfu ml(-1)) were strongly protected out to at least 24 weeks with RPS values up to 70%. Fish vaccinated with lower doses (∼10(6) and 10(5) cfu mL(-1)) had good protection out to 12 weeks, but RPS values dropped to 36% and 34%, respectively by 24 weeks. Vaccine efficacy was optimum when the primary vaccination was followed by a single booster (week 12 challenge RPS = 61%) rather than two boosters (week 12 challenge RPS = 48%). Vaccination without a booster resulted in a lower RPS (13%) indicating the necessity of a single booster vaccination to maximize efficacy. This study presents key findings that demonstrate the efficacy and commercial potential for this live attenuated BCWD vaccine.


Assuntos
Vacinas Bacterianas/imunologia , Doenças dos Peixes/prevenção & controle , Infecções por Flavobacteriaceae/veterinária , Flavobacterium/imunologia , Oncorhynchus mykiss , Animais , Vacinas Bacterianas/administração & dosagem , Doenças dos Peixes/imunologia , Doenças dos Peixes/microbiologia , Infecções por Flavobacteriaceae/imunologia , Infecções por Flavobacteriaceae/microbiologia , Infecções por Flavobacteriaceae/prevenção & controle , Vacinas Atenuadas/imunologia
17.
Appl Environ Microbiol ; 81(2): 658-65, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25381243

RESUMO

Flavobacterium psychrophilum causes bacterial cold-water disease in multiple fish species, including salmonids. An autochthonous Enterobacter strain (C6-6) inhibits the in vitro growth of F. psychrophilum, and when ingested as a putative probiotic, it provides protection against injection challenge with F. psychrophilum in rainbow trout. In this study, low-molecular-mass (≤3 kDa) fractions from both Enterobacter C6-6 and Escherichia coli K-12 culture supernatants inhibited the growth of F. psychrophilum. The ≤3-kDa fraction from Enterobacter C6-6 was analyzed by SDS-PAGE, and subsequent tandem mass spectroscopy identified EcnB, which is a small membrane lipoprotein that is a putative pore-forming toxin. Agar plate diffusion assays demonstrated that ecnAB knockout strains of both Enterobacter C6-6 and E. coli K-12 no longer inhibited F. psychrophilum (P < 0.001), while ecnAB-complemented knockout strains recovered the inhibitory phenotype (P < 0.001). In fish experiments, the engineered strains (C6-6 ΔecnAB and C6-6 ΔecnAB) and the wild-type strain (C6-6) were added to the fish diet every day for 38 days. On day 11, the fish were challenged by injection with a virulent strain of F. psychrophilum (CSF 259-93). Fish that were fed C6-6 had significantly longer survival than fish fed the ecnAB knockout strain (P < 0.0001), while fish fed the complemented knockout strain recovered the probiotic phenotype (P = 0.61). This entericidin is responsible for the probiotic activity of Enterobacter C6-6, and it may present new opportunities for therapeutic and prophylactic treatments against similarly susceptible pathogens.


Assuntos
Infecções Bacterianas/veterinária , Proteínas de Bactérias/metabolismo , Enterobacter/metabolismo , Doenças dos Peixes/prevenção & controle , Flavobacterium/crescimento & desenvolvimento , Oncorhynchus mykiss/microbiologia , Probióticos/administração & dosagem , Animais , Antibacterianos/isolamento & purificação , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Antibiose , Infecções Bacterianas/prevenção & controle , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/farmacologia , Temperatura Baixa , DNA Bacteriano/química , DNA Bacteriano/genética , Enterobacter/crescimento & desenvolvimento , Escherichia coli K12/metabolismo , Flavobacterium/efeitos dos fármacos , Espectrometria de Massas , Dados de Sequência Molecular , Análise de Sequência de DNA
18.
BMC Microbiol ; 15: 179, 2015 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-26377311

RESUMO

BACKGROUND: Flavobacterium psychrophilum is the etiologic agent of bacterial coldwater disease in salmonids. Earlier research showed that a rifampicin-passaged strain of F. psychrophilum (CSF 259-93B.17) caused no disease in rainbow trout (Oncorhynchus mykiss, Walbaum) while inducing a protective immune response against challenge with the virulent CSF 259-93 strain. We hypothesized that rifampicin passage leads to an accumulation of genomic mutations that, by chance, reduce virulence. To assess the pattern of phenotypic and genotypic changes associated with passage, we examined proteomic, LPS and single-nucleotide polymorphism (SNP) differences for two F. psychrophilum strains (CSF 259-93 and THC 02-90) that were passaged with and without rifampicin selection. RESULTS: Rifampicin resistance was conveyed by expected mutations in rpoB, although affecting different DNA bases depending on the strain. One rifampicin-passaged CSF 259-93 strain (CR) was attenuated (4 % mortality) in challenged fish, but only accumulated eight nonsynonymous SNPs compared to the parent strain. A CSF 259-93 strain passaged without rifampicin (CN) accumulated five nonsynonymous SNPs and was partially attenuated (28 % mortality) compared to the parent strain (54.5 % mortality). In contrast, there were no significant change in fish mortalities among THC 02-90 wild-type and passaged strains, despite numerous SNPs accumulated during passage with (n = 174) and without rifampicin (n = 126). While only three missense SNPs were associated with attenuation, a Ser492Phe rpoB mutation in the CR strain may contribute to further attenuation. All strains except CR retained a gliding motility phenotype. Few proteomic differences were observed by 2D SDS-PAGE and there were no apparent changes in LPS between strains. Comparative methylome analysis of two strains (CR and TR) identified no shared methylation motifs for these two strains. CONCLUSION: Multiple genomic changes arose during passage experiments with rifampicin selection pressure. Consistent with our hypothesis, unique strain-specific mutations were detected for the fully attenuated (CR), partially attenuated (CN) and another fully attenuated strain (B17).


Assuntos
Antibacterianos/metabolismo , Farmacorresistência Bacteriana , Infecções por Flavobacteriaceae/veterinária , Flavobacterium/efeitos dos fármacos , Flavobacterium/crescimento & desenvolvimento , Rifampina/metabolismo , Animais , RNA Polimerases Dirigidas por DNA/genética , Doenças dos Peixes/microbiologia , Infecções por Flavobacteriaceae/microbiologia , Flavobacterium/patogenicidade , Lipopolissacarídeos/análise , Dados de Sequência Molecular , Oncorhynchus mykiss , Polimorfismo de Nucleotídeo Único , Proteoma/análise , Seleção Genética , Análise de Sequência de DNA , Inoculações Seriadas , Análise de Sobrevida , Virulência
19.
Fish Shellfish Immunol ; 44(1): 156-63, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25687393

RESUMO

Teleosts possess three immunoglobulin (Ig) heavy chain isotypes viz., IgM, IgT and IgD and all three isotypes are reported in rainbow trout. The expression of these Ig isotypes in response to different immunization routes was investigated and results provide a better understanding of the role these Igs in different tissues. Rainbow trout (Oncorhynchus mykiss) were immunized with an attenuated Flavobacterium psychrophilum strain, 259-93-B.17 grown under iron limiting conditions, by intraperitoneal, anal intubation and immersion routes. Serum, gill mucus, skin mucus and intestinal mucus samples were collected at 0, 3, 7, 14, 28, 42 and 56 days post immunization by sacrificing four fish from each treatment group and the unimmunized control group, and the IgM levels were estimated by an enzyme linked immunosorbent assay (ELISA). In addition, blood, gill, skin and intestinal tissue samples were collected for Ig gene expression studies. The secretory IgM, IgD and IgT gene expression levels in these tissues were estimated by reverse transcription quantitative real time PCR (RT-qPCR). Levels of IgM in serum, gill and skin mucus increased significantly by 28 days after immunization in the intraperitoneally immunized group, while no significant increase in IgM level was observed in fish groups immunized by other routes. Secretory IgD and IgT expression levels were significantly upregulated in gills of fish immunized by the immersion route. Similarly, secretory IgT and IgD were upregulated in intestines of fish immunized by anal intubation route. The results confirm mucosal association of IgT and suggest that IgD may also be specialized in mucosal immunity and contribute to immediate protection to the fish at mucosal surfaces.


Assuntos
Vacinas Bacterianas/imunologia , Vias de Administração de Medicamentos/veterinária , Flavobacterium/imunologia , Imunidade Inata , Imunidade nas Mucosas , Imunização/veterinária , Oncorhynchus mykiss/imunologia , Animais , Vacinas Bacterianas/administração & dosagem , Proteínas de Peixes/sangue , Imunoglobulina D/sangue , Cadeias Pesadas de Imunoglobulinas/sangue , Isotipos de Imunoglobulinas/sangue , Imunoglobulina M/sangue , Imunoglobulinas/sangue , Injeções Intraperitoneais/veterinária , Intubação/veterinária , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/imunologia
20.
Dis Aquat Organ ; 115(2): 139-46, 2015 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-26203885

RESUMO

A quantitative PCR (qPCR) assay was developed for Flavobacterium psychrophilum, the causative agent of bacterial coldwater disease. The assay was targeted to fp1493 as it encodes a putative outer membrane protein (FP1493) that is reactive to the monoclonal antibody (MAb FL43) used in a standardized F. psychrophilum capture enzyme-linked immunosorbent assay (ELISA). The qPCR was specific to F. psychrophilum and was able to detect between 8 and 809000 copies of fp1493. To determine if antigen level in the tissue was indicative of bacterial concentration, kidney samples from 108 steelhead Oncorhynchus mykiss and coho salmon O. kisutch female broodstock were screened by ELISA and qPCR. There was no correlation between ELISA optical density (OD) values and the number of F. psychrophilum cells g⁻¹ of kidney tissue as estimated by qPCR (rS = 0.42; p > 0.05). The median number of F. psychrophilum cells in steelhead samples was 6.11 × 10³ cells g⁻¹ of tissue. For coho salmon samples, the median number of cells was 3.95 × 10³ cells g⁻¹ of tissue. Agreement between the 2 assays was less than 50%. As fp1493 is a single-copy gene and differential expression of FP1493 has been reported, we hypothesize that the discrepancy between the 2 assays is due to increased expression of FP1493 in the in vivo environment. Therefore, ELISA OD values most likely provide an indication of differential protein expression, while the qPCR assay estimates bacterial load in tissue.


Assuntos
Ensaio de Imunoadsorção Enzimática/veterinária , Doenças dos Peixes/microbiologia , Infecções por Flavobacteriaceae/veterinária , Flavobacterium/isolamento & purificação , Reação em Cadeia da Polimerase/veterinária , Animais , Ensaio de Imunoadsorção Enzimática/métodos , Feminino , Doenças dos Peixes/diagnóstico , Infecções por Flavobacteriaceae/diagnóstico , Oncorhynchus mykiss , Reação em Cadeia da Polimerase/métodos , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA