Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Oral Implantol ; 49(4): 401-406, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37527174

RESUMO

This study aimed to evaluate temperature changes in titanium and ceramic implants after using a 445-nm diode laser under different in vitro conditions. Titanium (Ti) and ceramic (Zr) dental implants were placed into a bone analog, and an intrabony defect was created at each implant. A 445-nm diode laser was used to irradiate the defects for 30 seconds, noncontact, at 2 W in continuous wave (c.w.) and pulsed mode. The experiment was done at room temperature (21.0 ± 1°C) and in a water bath (37.0 ± 1°C). Two thermocouple probes were used to record real-time temperature changes (°C) at the coronal part of the implant (Tc) and the apex (Ta). The temperature was recorded at time 0 (To) and after 30 seconds of irradiation (Tf). The average temperature change was calculated, and a descriptive analysis was conducted (P < .05). The Ti implant resulted in the highest ΔT values coronally (29.6°C) and apically (6.7°C) using continuous wave at 21°C. The Zr implant increased to 26.4°C coronally and 5.2°C apically. In the water bath, the coronal portion of the Ti and Zr implants rose to 14.2°C and 14.01°C, respectively, using continuous waves. The ΔT values for Ti were 11.9°C coronally and 1.7°C apically when placed in a water bath using pulsed mode. The lowest ΔT occurred on the Zr implant with ΔTc and ΔTa of 4.8°C and 0.78°C, respectively. Under in vitro conditions, the 445-nm diode laser in pulsed mode seems to be safe for use on ceramic implants and should be used with caution on titanium implants.


Assuntos
Implantes Dentários , Lasers Semicondutores , Titânio , Temperatura , Água
2.
Photobiomodul Photomed Laser Surg ; 40(8): 554-558, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35960815

RESUMO

Objective: The aim of this study was to determine the thermal effects of diode laser irradiation on titanium implants. Methods: An implant (3.5 × 11 mm) was placed into a bovine bone block. A three-wall intrabony defect was created to simulate peri-implant defect. Two thermocouples were secured to the apical and coronal surfaces to measure temperature changes (ΔT) during irradiation. The block was placed in a 37°C water bath and at room temperature (21°C). The defect was irradiated with different diode lasers (fiber 300 µm), while the coronal part of the implant was slightly emerging from the water. While the laser tip was positioned parallel to the implant, the defect was irradiated for 30 sec at 2 W in continuous and pulsed mode. Twenty laser irradiations were performed for each laser wavelength for assessment of ΔT. The linear mixed model was used for comparative statistics. Results: The 980 nm pulsed laser resulted in the highest ΔT (°C) at the coronal (22.45 ± 2.1/14.15 ± 0.13) and apical level (5.4 ± 0.56/3.56 ± 0.35) when this laser was used in both room temperature and water bath conditions, respectively. Similarly, highest ΔT (p < 0.0001) for the 810 nm was 14.3 ± 1.6/12.51 ± 0.63 and apical 3.42 ± 0.52/2.58 ± 0.25, for the 970 nm was 13 ± 1.4/9.93 ± 0.47 and apical 2.89 ± 0.19/2.01 ± 0.19 compared to the 940 nm laser coronally 10.1 ± 0.6/9.19 ± 0.35 and apically 1.67 ± 0.34/1.80 ± 0.17. The coronal part of the implant surpassed the critical threshold of 10°C when irradiated with each of the lasers in the room temperature conditions. Conclusions: Within the limitations of the study, the 940 nm laser seems to control better the risks of overheating during implant irradiation.


Assuntos
Lasers Semicondutores , Titânio , Animais , Bovinos , Temperatura , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA