Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38791415

RESUMO

In recent years, there has been a growing interest in the concept of the "gut-brain axis". In addition to well-studied diseases associated with an imbalance in gut microbiota, such as cancer, chronic inflammation, and cardiovascular diseases, research is now exploring the potential role of gut microbial dysbiosis in the onset and development of brain-related diseases. When the function of the intestinal barrier is altered by dysbiosis, the aberrant immune system response interacts with the nervous system, leading to a state of "neuroinflammation". The gut microbiota-brain axis is mediated by inflammatory and immunological mechanisms, neurotransmitters, and neuroendocrine pathways. This narrative review aims to illustrate the molecular basis of neuroinflammation and elaborate on the concept of the gut-brain axis by virtue of analyzing the various metabolites produced by the gut microbiome and how they might impact the nervous system. Additionally, the current review will highlight how sex influences these molecular mechanisms. In fact, sex hormones impact the brain-gut microbiota axis at different levels, such as the central nervous system, the enteric nervous one, and enteroendocrine cells. A deeper understanding of the gut-brain axis in human health and disease is crucial to guide diagnoses, treatments, and preventive interventions.


Assuntos
Eixo Encéfalo-Intestino , Microbioma Gastrointestinal , Doenças Neuroinflamatórias , Caracteres Sexuais , Humanos , Eixo Encéfalo-Intestino/fisiologia , Doenças Neuroinflamatórias/metabolismo , Animais , Disbiose , Hormônios Esteroides Gonadais/metabolismo , Encéfalo/metabolismo , Feminino , Masculino , Inflamação/metabolismo
2.
Diseases ; 12(6)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38920550

RESUMO

According to the definition provided by the United Nations, "climate change" describes the persistent alterations in temperatures and weather trends. These alterations may arise naturally, such as fluctuations in the solar cycle. Nonetheless, since the 19th century, human activities have emerged as the primary agent for climate change, primarily attributed to the combustion of fossil fuels such as coal, oil, and gas. Climate change can potentially influence the well-being, agricultural production, housing, safety, and employment opportunities for all individuals. The immune system is an important interface through which global climate change affects human health. Extreme heat, weather events and environmental pollutants could impair both innate and adaptive immune responses, promoting inflammation and genomic instability, and increasing the risk of autoimmune and chronic inflammatory diseases. Moreover, climate change has an impact on both soil and gut microbiome composition, which can further explain changes in human health outcomes. This narrative review aims to explore the influence of climate change on human health and disease, focusing specifically on its effects on the immune system and gut microbiota. Understanding how these factors contribute to the development of physical and mental illness may allow for the design of strategies aimed at reducing the negative impact of climate and pollution on human health.

3.
Cells ; 13(6)2024 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-38534370

RESUMO

The development of preventive and therapeutic vaccines has played a crucial role in preventing infections and treating chronic and non-communicable diseases, respectively. For a long time, the influence of sex differences on modifying health and disease has not been addressed in clinical and preclinical studies. The interaction of genetic, epigenetic, and hormonal factors plays a role in the sex-related differences in the epidemiology of diseases, clinical manifestations, and the response to treatment. Moreover, sex is one of the leading factors influencing the gut microbiota composition, which could further explain the different predisposition to diseases in men and women. In the same way, differences between sexes occur also in the immune response to vaccines. This narrative review aims to highlight these differences, focusing on the immune response to vaccines. Comparative data about immune responses, vaccine effectiveness, and side effects are reviewed. Hence, the intricate interplay between sex, immunity, and the gut microbiota will be discussed for its potential role in the response to vaccination. Embracing a sex-oriented perspective in research may improve the efficacy of the immune response and allow the design of tailored vaccine schedules.


Assuntos
Microbioma Gastrointestinal , Vacinas , Feminino , Humanos , Masculino , Vacinação
4.
Biomedicines ; 11(11)2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38002063

RESUMO

The microbiota represents a key factor in determining health and disease. Its role in inflammation and immunological disorders is well known, but it is also involved in several complex conditions, ranging from neurological to psychiatric, from gastrointestinal to cardiovascular diseases. It has recently been hypothesized that the gut microbiota may act as an intermediary in the close interaction between kidneys and the cardiovascular system, leading to the conceptualization of the "gut-kidney-heart" axis. In this narrative review, we will discuss the impact of the gut microbiota on each system while also reviewing the available data regarding the axis itself. We will also describe the role of gut metabolites in this complex interplay, as well as potential therapeutical perspectives.

5.
Diseases ; 12(1)2023 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-38248356

RESUMO

Hemophilia A is a hemorrhagic disorder caused by insufficient or inadequate coagulation factor VIII activity. Two different forms are described: congenital, hereditary X-linked, and acquired. Acquired hemophilia A (AHA) is a rare condition and it is defined by the production of autoantibodies neutralizing factor VIII, known as inhibitors. We report the case of a 72-year-old man with a clinical diagnosis of AHA after SARS-CoV-2 infection, which has been described in association with several hematological complications. SARS-CoV-2 infection could represent the immunological trigger for the development of autoantibodies. In our patient, SARS-CoV-2 infection preceded the hemorrhagic complications by 15 days. This lag time is in line with the other cases reported and compatible with the development of an intense immune response with autoantibody production. It is possible that since our patient was affected by type 1 diabetes mellitus, he was more prone to an immune system pathological response against self-antigens. A prompt, appropriate therapeutic intervention with activated recombinant factor VII administration and cyclophosphamide has led to rapid remission of clinical and laboratory findings.

6.
Vaccines (Basel) ; 11(1)2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36679996

RESUMO

Systemic autoinflammatory diseases (SAIDs) are defined by recurrent febrile attacks associated with protean manifestations involving joints, the gastrointestinal tract, skin, and the central nervous system, combined with elevated inflammatory markers, and are caused by a dysregulation of the innate immune system. From a clinical standpoint, the most known SAIDs are familial Mediterranean fever (FMF); cryopyrin-associated periodic syndrome (CAPS); mevalonate kinase deficiency (MKD); and periodic fever, aphthosis, pharyngitis, and adenitis (PFAPA) syndrome. Current guidelines recommend the regular sequential administration of vaccines for all individuals with SAIDs. However, these patients have a much lower vaccination coverage rates in 'real-world' epidemiological studies than the general population. The main purpose of this review was to evaluate the scientific evidence available on both the efficacy and safety of vaccines in patients with SAIDs. From this analysis, neither serious adverse effects nor poorer antibody responses have been observed after vaccination in patients with SAIDs on treatment with biologic agents. More specifically, no new-onset immune-mediated complications have been observed following immunizations. Post-vaccination acute flares were significantly less frequent in FMF patients treated with colchicine alone than in those treated with both colchicine and canakinumab. Conversely, a decreased risk of SARS-CoV-2 infection has been proved for patients with FMF after vaccination with the mRNA-based BNT162b2 vaccine. Canakinumab did not appear to affect the ability to produce antibodies against non-live vaccines in patients with CAPS, especially if administered with a time lag from the vaccination. On the other hand, our analysis has shown that immunization against Streptococcus pneumoniae, specifically with the pneumococcal polysaccharide vaccine, was associated with a higher incidence of adverse reactions in CAPS patients. In addition, disease flares might be elicited by vaccinations in children with MKD, though no adverse events have been noted despite concurrent treatment with either anakinra or canakinumab. PFAPA patients seem to be less responsive to measles, mumps, and rubella-vaccine, but have shown higher antibody response than healthy controls following vaccination against hepatitis A. In consideration of the clinical frailty of both children and adults with SAIDs, all vaccinations remain 'highly' recommended in this category of patients despite the paucity of data available.

7.
Vaccines (Basel) ; 11(10)2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37897011

RESUMO

Vaccine immunogenicity still represents an unmet need in specific populations, such as people from developing countries and "edge populations". Both intrinsic and extrinsic factors, such as the environment, age, and dietary habits, influence cellular and humoral immune responses. The human microbiota represents a potential key to understanding how these factors impact the immune response to vaccination, with its modulation being a potential step to address vaccine immunogenicity. The aim of this narrative review is to explore the intricate interactions between the microbiota and the immune system in response to vaccines, highlighting the state of the art in gut microbiota modulation as a novel therapeutic approach to enhancing vaccine immunogenicity and laying the foundation for future, more solid data for its translation to the clinical practice.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA