RESUMO
Caenorhabditis elegans was studied to determine the potential role of free-living microbivorous nematodes as vectors for preharvest contamination of fruits and vegetables with foodborne pathogens. The propensity of C. elegans to be attracted to seven strains of Escherichia coli O157:H7, eight serotypes of Salmonella, six strains of Listeria monocytogenes, and cantaloupe juice was investigated. Twenty to 30 adult worms were placed on the surface of K agar midway between a 24-h bacterial colony and 10 microl of uninoculated tryptic soy broth (TSB) or cantaloupe juice positioned 1.5 cm apart. The numbers of nematodes that migrated to the colony, to the TSB, and to the cantaloupe juice within 5, 10, 15, and 20 min at 21 degrees C were determined, and then the plates were incubated at 37 degrees C for up to 7 days to determine the ability of C. elegans to survive and reproduce in bacterial colonies. The nematode was attracted to colonies of all test pathogens and survived and reproduced within colonies for up to 7 days. C. elegans was not attracted to cantaloupe juice. The potential of C. elegans to serve as a vector for the transport of Salmonella Poona to cantaloupe rinds was investigated. Adult worms that had been immersed in a suspension of Salmonella Poona were deposited 1 or 3 cm below the surface of soil on which a piece of cantaloupe rind was placed. The rind was analyzed for the presence of Salmonella Poona after 1, 3, 7, and 10 days at 21 degrees C. The presence of Salmonella Poona was evident more quickly on rinds positioned on soil beneath which C. elegans inoculated with Salmonella Poona was initially deposited than on rinds positioned on soil beneath which Salmonella Poona alone was deposited. The time required to detect Salmonella Poona on rinds was longer when the rind was placed 3 cm above the inoculum than when the rind was placed 1 cm above the inoculum. Free-living nematodes may play a role in the preharvest dispersal of incidental human pathogens in soil to the surfaces of raw fruits and vegetables in contact with soil during development and maturation, as evidenced by the behavior of C. elegans as a test model.
Assuntos
Caenorhabditis elegans/microbiologia , Cucumis melo/microbiologia , Cucumis melo/parasitologia , Vetores de Doenças , Contaminação de Alimentos/análise , Salmonella/fisiologia , Animais , Bebidas/microbiologia , Bebidas/parasitologia , Caenorhabditis elegans/fisiologia , Qualidade de Produtos para o Consumidor , Microbiologia de Alimentos , Humanos , Listeria monocytogenes/fisiologia , Solo/parasitologia , Microbiologia do Solo , Temperatura , Fatores de TempoRESUMO
Free-living nematodes may harbor, protect, and disperse bacteria, including those ingested and passed in viable form in feces. These nematodes are potential vectors for human pathogens and may play a role in foodborne diseases associated with fruits and vegetables eaten raw. In this study, we evaluated the associations between a free-living soil nematode, Caenorhabditis elegans, and Escherichia coli, an avirulent strain of Salmonella Typhimurium, Listeria welshimeri, and Bacillus cereus. On an agar medium, young adult worms quickly moved toward colonies of all four bacteria; over 90% of 3-day-old adult worms entered colonies within 16 min after inoculation. After 48 h, worms moved in and out of colonies of L. welshimeri and B. cereus but remained associated with E. coli and Salmonella Typhimurium colonies for at least 96 h. Young adult worms fed on cells of the four bacteria suspended in K medium. Worms survived and reproduced with the use of nutrients derived from all test bacteria, as determined for eggs laid by second-generation worms after culturing for 96 h. Development was slightly slower for worms fed gram-positive bacteria than for worms fed gram-negative bacteria. Worms that fed for 24 h on bacterial lawns formed on tryptic soy agar dispersed bacteria over a 3-h period when they were transferred to a bacteria-free agar surface. The results of this study suggest that C. elegans and perhaps other free-living nematodes are potential vectors for both gram-positive and gram-negative bacteria, including foodborne pathogens in soil.
Assuntos
Caenorhabditis elegans/microbiologia , Vetores de Doenças , Microbiologia de Alimentos , Animais , Bacillus cereus/crescimento & desenvolvimento , Caenorhabditis elegans/crescimento & desenvolvimento , Qualidade de Produtos para o Consumidor , Escherichia coli/crescimento & desenvolvimento , Fezes/microbiologia , Listeria/crescimento & desenvolvimento , Salmonella typhimurium/crescimento & desenvolvimento , Solo/parasitologia , Microbiologia do SoloRESUMO
Free-living nematodes are known to ingest food-borne pathogens and may serve as vectors to contaminate preharvest fruits and vegetables. Caenorhabditis elegans was selected as a model to study the effectiveness of sanitizers in killing Salmonella enterica serotype Poona ingested by free-living nematodes. Aqueous suspensions of adult worms that had fed on S. enterica serotype Poona were treated with produce sanitizers. Treatment with 20 microg of free chlorine/ml significantly (alpha = 0.05) reduced the population of S. enterica serotype Poona compared to results for treating worms with water (control). However, there was no significant difference in the number of S. enterica serotype Poona cells surviving treatments with 20 to 500 microg of chlorine/ml, suggesting that reductions caused by treatment with 20 microg of chlorine/ml resulted from inactivation of S. enterica serotype Poona on the surface of C. elegans but not cells protected by the worm cuticle after ingestion. Treatment with Sanova (850 or 1,200 microg/ml), an acidified sodium chlorite sanitizer, caused reductions of 5.74 and 6.34 log(10) CFU/worm, respectively, compared to reductions from treating worms with water. Treatment with 20 or 40 microg of Tsunami 200/ml, a peroxyacetic acid-based sanitizer, resulted in reductions of 4.83 and 5.34 log(10) CFU/worm, respectively, compared to numbers detected on or in worms treated with water. Among the organic acids evaluated at a concentration of 2%, acetic acid was the least effective in killing S. enterica serotype Poona and lactic acid was the most effective. Treatment with up to 500 microg of chlorine/ml, 1% hydrogen peroxide, 2,550 microg of Sanova/ml, 40 microg of Tsunami 200/ml, or 2% acetic, citric, or lactic acid had no effect on the viability or reproductive behavior of C. elegans. Treatments were also applied to cantaloupe rind and lettuce inoculated with S. enterica serotype Poona or C. elegans that had ingested S. enterica serotype Poona. Protection of ingested S. enterica serotype Poona against sanitizers applied to cantaloupe was not evident; however, ingestion afforded protection of the pathogen on lettuce. These results indicate that S. enterica serotype Poona ingested by C. elegans may be protected against treatment with chlorine and other sanitizers, although the basis for this protection remains unclear.