Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Mol Psychiatry ; 20(4): 472-81, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24888363

RESUMO

Sequence analysis of 13 microRNA (miRNA) genes expressed in the human brain and located in genomic regions associated with schizophrenia and/or bipolar disorder, in a northern Swedish patient/control population, resulted in the discovery of two functional variants in the MIR137 gene. On the basis of their location and the allele frequency differences between patients and controls, we explored the hypothesis that the discovered variants impact the expression of the mature miRNA and consequently influence global mRNA expression affecting normal brain functioning. Using neuronal-like SH-SY5Y cells, we demonstrated significantly reduced mature miR-137 levels in the cells expressing the variant miRNA gene. Subsequent transcriptome analysis showed that the reduction in miR-137 expression led to the deregulation of gene sets involved in synaptogenesis and neuronal transmission, all implicated in psychiatric disorders. Our functional findings add to the growing data, which implicate that miR-137 has an important role in the etiology of psychiatric disorders and emphasizes its involvement in nervous system development and proper synaptic function.


Assuntos
Transtornos Mentais/genética , Transtornos Mentais/patologia , MicroRNAs/genética , Repetições Minissatélites/genética , Neurogênese/genética , Transmissão Sináptica/genética , Linhagem Celular Tumoral , Feminino , Perfilação da Expressão Gênica , Frequência do Gene , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Masculino , MicroRNAs/metabolismo , Análise em Microsséries , Modelos Moleculares , Neuroblastoma/patologia , Análise de Sequência com Séries de Oligonucleotídeos , Suécia , Transfecção
2.
Artigo em Inglês | MEDLINE | ID: mdl-25336160

RESUMO

Glial cells constitute about 10 % of the Drosophila nervous system. The development of genetic and molecular tools has helped greatly in defining different types of glia. Furthermore, considerable progress has been made in unraveling the mechanisms that control the development and differentiation of Drosophila glia. By contrast, the role of glia in adult Drosophila behavior is not well understood. We here summarize recent work describing the role of glia in normal behavior and in Drosophila models for neurological and behavioral disorders.


Assuntos
Comportamento Animal/fisiologia , Drosophila/fisiologia , Neuroglia/fisiologia , Animais , Drosophila/anatomia & histologia , Neuroglia/citologia
3.
Mol Psychiatry ; 18(11): 1225-34, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23399914

RESUMO

Genome-wide association studies (GWAS) have identified a region upstream the BIN1 gene as the most important genetic susceptibility locus in Alzheimer's disease (AD) after APOE. We report that BIN1 transcript levels were increased in AD brains and identified a novel 3 bp insertion allele ∼28 kb upstream of BIN1, which increased (i) transcriptional activity in vitro, (ii) BIN1 expression levels in human brain and (iii) AD risk in three independent case-control cohorts (Meta-analysed Odds ratio of 1.20 (1.14-1.26) (P=3.8 × 10(-11))). Interestingly, decreased expression of the Drosophila BIN1 ortholog Amph suppressed Tau-mediated neurotoxicity in three different assays. Accordingly, Tau and BIN1 colocalized and interacted in human neuroblastoma cells and in mouse brain. Finally, the 3 bp insertion was associated with Tau but not Amyloid loads in AD brains. We propose that BIN1 mediates AD risk by modulating Tau pathology.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Predisposição Genética para Doença/genética , Proteínas Nucleares/genética , Proteínas Supressoras de Tumor/genética , Proteínas tau/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/biossíntese , Doença de Alzheimer/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Estudos de Casos e Controles , Células Cultivadas , Proteínas de Drosophila/deficiência , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Endofenótipos , Expressão Gênica/genética , Humanos , Camundongos , Degeneração Neural/genética , Degeneração Neural/patologia , Proteínas Nucleares/biossíntese , Placa Amiloide/patologia , Polimorfismo de Nucleotídeo Único/genética , Sinaptossomos/patologia , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/biossíntese , Proteínas tau/antagonistas & inibidores
4.
Insect Biochem Mol Biol ; 141: 103670, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34666188

RESUMO

Members of the insulin superfamily activate the evolutionarily highly conserved insulin/insulin-like growth factor signaling pathway, involved in regulation of growth, energy homeostasis, and longevity. In the current study we focus on aphids to gain more insight into the evolution of the IRPs and how they may contribute to regulation of the insulin-signaling pathway. Using the latest annotation of the pea aphid (Acyrthosiphon pisum) genome, and combining sequence alignments and phylogenetic analyses, we identified seven putative IRP encoding-genes, with IRP1-IRP4 resembling the classical insulin and insulin-like protein structures, and IRP5 and IRP6 bearing insulin-like growth factor (IGF) features. We also identified IRP11 as a new and structurally divergent IRP present in at least eight aphid genomes. Globally the ten aphid genomes analyzed in this work contain four to 15 IRPs, while only three IRPs were found in the genome of the grape phylloxera, a hemipteran insect representing an earlier evolutionary branch of the aphid group. Expression analyses revealed spatial and temporal variation in the expression patterns of the different A. pisum IRPs. IRP1 and IRP4 are expressed throughout all developmental stages and morphs in neuroendocrine cells of the brain, while IRP5 and IRP6 are expressed in the fat body. IRP2 is expressed in specific cells of the gut in aphids in non-crowded conditions and in the head of aphids under crowded conditions, IRP3 in salivary glands, and both IRP2 and IRP3 in the male morph. IRP11 expression is enriched in the carcass. This complex spatiotemporal expression pattern suggests functional diversification of the IRPs.


Assuntos
Afídeos/genética , Evolução Molecular , Hormônios de Inseto/genética , Neuropeptídeos/genética , Animais , Afídeos/crescimento & desenvolvimento , Feminino , Masculino , Ninfa/genética , Ninfa/crescimento & desenvolvimento , Análise Espaço-Temporal
5.
Brain Behav Immun Health ; 2: 100018, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38377433

RESUMO

Background: Neuropsychiatric lupus (NPSLE) refers to the neurological and psychiatric manifestations that are commonly observed in patients with systemic lupus erythematosus (SLE). An important question regarding the pathogenesis of NPSLE is whether the symptoms are caused primarily by CNS-intrinsic mechanisms or develop as a consequence of systemic autoimmunity. Currently used spontaneous mouse models for SLE have already contributed significantly to unraveling how systemic immunity affects the CNS. However, they are less suited when interested in CNS primary mechanisms. In addition, none of these models are based on genes that are associated with SLE. In this study, we evaluate the influence of A20, a well-known susceptibility locus for SLE, on behavior and CNS-associated changes in inflammatory markers. Furthermore, given the importance of environmental triggers for disease onset and progression, the influence of an acute immunological challenge was evaluated. Methods: Female and male A20 heterozygous mice (A20+/-) and wildtype littermates were tested in an extensive behavioral battery. This was done at the age of 10±2weeks and 24 â€‹± â€‹2 weeks to evaluate the impact of aging. To investigate the contribution of an acute immunological challenge, LPS was injected intracerebroventricularly at the age of 10±2weeks followed by behavioral analysis. Underlying molecular mechanisms were evaluated in gene expression assays on hippocampus and cortex. White blood cell count and blood-brain barrier permeability were analyzed to determine whether peripheral inflammation is a relevant factor. Results: A20 heterozygosity predisposes to cognitive symptoms that were observed at the age of 10 â€‹± â€‹2 weeks and 24 â€‹± â€‹2 weeks. Young A20+/- males and females showed a subtle cognitive phenotype (10±2weeks) with distinct neuroinflammatory phenotypes. Aging was associated with clear neuroinflammation in female A20+/- mice only. The genetic predisposition in combination with an environmental stimulus exacerbates the behavioral impairments related to anxiety, cognitive dysfunction and sensorimotor gating. This was predominantly observed in females. Furthermore, signs of neuroinflammation were solely observed in female A20+/- mice. All above observations were made in the absence of peripheral inflammation and of changes in blood-brain barrier permeability, thus consistent with the CNS-primary hypothesis. Conclusions: We show that A20 heterozygosity is a predisposing factor for NPSLE. Further mechanistic insight and possible therapeutic interventions can be studied in this mouse model that recapitulates several key hallmarks of the disease.

6.
Science ; 267(5205): 1788-92, 1995 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-7892602

RESUMO

The Drosophila gene eyeless (ey) encodes a transcription factor with both a paired domain and a homeodomain. It is homologous to the mouse Small eye (Pax-6) gene and to the Aniridia gene in humans. These genes share extensive sequence identity, the position of three intron splice sites is conserved, and these genes are expressed similarly in the developing nervous system and in the eye during morphogenesis. Loss-of-function mutations in both the insect and in the mammalian genes have been shown to lead to a reduction or absence of eye structures, which suggests that ey functions in eye morphogenesis. By targeted expression of the ey complementary DNA in various imaginal disc primordia of Drosophila, ectopic eye structures were induced on the wings, the legs, and on the antennae. The ectopic eyes appeared morphologically normal and consisted of groups of fully differentiated ommatidia with a complete set of photoreceptor cells. These results support the proposition that ey is the master control gene for eye morphogenesis. Because homologous genes are present in vertebrates, ascidians, insects, cephalopods, and nemerteans, ey may function as a master control gene throughout the metazoa.


Assuntos
Drosophila/embriologia , Drosophila/genética , Genes de Insetos/fisiologia , Animais , Olho/embriologia , Regulação da Expressão Gênica/fisiologia , Genes Homeobox/fisiologia , Genes Reporter , Microscopia Eletrônica de Varredura , Mutação , Células Fotorreceptoras de Invertebrados/embriologia , beta-Galactosidase/genética
7.
Curr Opin Genet Dev ; 5(5): 602-9, 1995 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-8664548

RESUMO

The highly complex eyes of vertebrates, insects and molluscs have long been considered to be of independent evolutionary origin. Recently, however, Pax-6, a highly conserved transcription factor, has been identified as a key regulator of eye development in both mammals and flies. Homologues of Pax-6 have also been identified in species from other phyla, including molluscs. The wide variety of eyes in the animal kingdom may, therefore, have evolved from a single ancestral photosensitive origin.


Assuntos
Evolução Biológica , Proteínas de Ligação a DNA/biossíntese , Olho/anatomia & histologia , Proteínas de Homeodomínio , Fenômenos Fisiológicos Oculares , Fatores de Transcrição/biossíntese , Animais , Encéfalo/fisiologia , Proteínas de Ligação a DNA/genética , Drosophila , Proteínas do Olho , Humanos , Insetos , Mamíferos , Modelos Biológicos , Moluscos , Fator de Transcrição PAX6 , Fatores de Transcrição Box Pareados , Células Fotorreceptoras/anatomia & histologia , Células Fotorreceptoras/fisiologia , Células Fotorreceptoras de Invertebrados/anatomia & histologia , Células Fotorreceptoras de Invertebrados/fisiologia , Proteínas Repressoras , Fatores de Transcrição/genética , Vertebrados , Vias Visuais/anatomia & histologia , Vias Visuais/fisiologia
8.
Psychopharmacology (Berl) ; 233(9): 1751-62, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26852229

RESUMO

RATIONALE: Lithium and valproate (VPA) are drugs used in the management of bipolar disorder. Even though they reportedly act on various pathways, the transcriptional targets relevant for disease mechanism and therapeutic effect remain unclear. Furthermore, multiple studies used lymphoblasts of bipolar patients as a cellular proxy, but it remains unclear whether peripheral cells provide a good readout for the effects of these drugs in the brain. OBJECTIVES: We used Drosophila culture cells and adult flies to analyze the transcriptional effects of lithium and VPA and define mechanistic pathways. METHODS: Transcriptional profiles were determined for Drosophila S2-cells and adult fly heads following lithium or VPA treatment. Gene ontology categories were identified using the DAVID functional annotation tool with a cut-off of p < 0.05. Significantly enriched GO terms were clustered using REVIGO and DAVID functional annotation clustering. Significance of overlap between transcript lists was determined with a Fisher's exact hypergeometric test. RESULTS: Treatment of cultured cells and adult flies with lithium and VPA induces transcriptional responses in genes with similar ontology, with as most prominent immune response, neuronal development, neuronal function, and metabolism. CONCLUSIONS: (i) Transcriptional effects of lithium and VPA in Drosophila S2 cells and heads show significant overlap. (ii) The overlap between transcriptional alterations in peripheral versus neuronal cells at the single gene level is negligible, but at the gene ontology and pathway level considerable overlap can be found. (iii) Lithium and VPA act on evolutionarily conserved pathways in Drosophila and mammalian models.


Assuntos
Antimaníacos/farmacologia , Drosophila/genética , Drosophila/metabolismo , Sistema Imunitário/efeitos dos fármacos , Redes e Vias Metabólicas/efeitos dos fármacos , Redes e Vias Metabólicas/genética , Neurônios/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos , Animais , Linhagem Celular , Cabeça , Cloreto de Lítio/farmacologia , Análise em Microsséries , Ácido Valproico/farmacologia
9.
Mech Dev ; 94(1-2): 157-69, 2000 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-10842067

RESUMO

We characterized a Pax gene from the hydrozoan Podocoryne carnea. It is most similar to cnidarian Pax-B genes and encodes a paired domain, a homeodomain and an octapeptide. Expression analysis demonstrates the presence of Pax-B transcripts in eggs, the ectoderm of the planula larva and in a few scattered cells in the apical polyp ectoderm. In developing and mature medusae, Pax-B is localized in particular endodermal cells, oriented toward the outside. Pax-B is not expressed in muscle cells. However, if isolated striated muscle tissue is activated for transdifferentiation, the gene is expressed within 1 h, before new cell types, such as smooth muscle and nerve cells, have formed. The expression data indicate that Pax-B is involved in nerve cell differentiation.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Filogenia , Cifozoários/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Diferenciação Celular/genética , Células Cultivadas , Clonagem Molecular , Sequência Conservada , Embrião não Mamífero , Endoderma/fisiologia , Feminino , Larva , Dados de Sequência Molecular , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Óvulo/fisiologia , Fatores de Transcrição Box Pareados , Cifozoários/embriologia , Homologia de Sequência de Aminoácidos
10.
Mech Dev ; 120(2): 177-83, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12559490

RESUMO

The cloning of a Pax6 orthologue from the sepiolid squid Euprymna scolopes and its developmental expression pattern are described. The data are consistent with the presence of a single gene encoding a protein with highly conserved DNA-binding paired and homeodomains. A detailed expression analysis by in situ hybridization and immunodetection revealed Pax6 mRNA and protein with predominantly nuclear localization in the developing eye, olfactory organ, brain lobes (optic lobe, olfactory lobe, peduncle lobe, superior frontal lobe and dorsal basal lobe), arms and mantle, suggestive of a role in eye, brain, and sensory organ development.


Assuntos
Encéfalo/embriologia , Decapodiformes/embriologia , Olho/embriologia , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Órgãos dos Sentidos/embriologia , Sequência de Aminoácidos , Animais , Encéfalo/metabolismo , Núcleo Celular/metabolismo , Clonagem Molecular , Decapodiformes/genética , Embrião não Mamífero , Olho/metabolismo , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Dados de Sequência Molecular , Fator de Transcrição PAX6 , Fatores de Transcrição Box Pareados , Proteínas Repressoras , Órgãos dos Sentidos/metabolismo , Homologia de Sequência de Aminoácidos
11.
DNA Cell Biol ; 17(7): 621-33, 1998 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-9703021

RESUMO

In insects, arylalkylamine N-acetyltransferases (AANATs) have been implicated in several physiological processes, including sclerotization, inactivation of certain neurotransmitters, and, similar to the function in vertebrates, catalysis of the rate-limiting step in melatonin biosynthesis. Here, we report an extensive biochemical and functional analysis of the products of the aaNAT1 gene of Drosophila melanogaster. The aaNAT1 gene generates two transcripts through alternative first-exon usage. These transcripts are under tissue-specific and developmental control and encode proteins which differ in their N-terminus with respect to their starting methionine. The more abundant isoform, AANATlb, is first expressed during late embryogenesis in the brain, the ventral nerve cord, and the midgut; in adults, AANATlb is still detectable in the brain and midgut. The less abundant isoform, AANATla, appears only during late pupal stages and in adults is found predominantly in the brain. We demonstrate that the mutation Dat(lo) represents a hypomorphic allele of aaNAT1b, in which an insertion of two transposable elements, MDG412 and blastopia, has occurred within the first intron of the gene. Using a deficiency which removes the aaNAT1 gene, we provide evidence that aaNAT1 is not essential for the process of sclerotization. Furthermore, neither of the two enzyme isoforms shows circadian regulation of RNA or protein levels. The differing levels of abundance and distinct developmental control of AANAT1a and AANAT1b suggest different in vivo functions for these two enzymes.


Assuntos
Arilamina N-Acetiltransferase/genética , Drosophila melanogaster/genética , Genes de Insetos/genética , Processamento Alternativo/genética , Animais , Arilamina N-Acetiltransferase/química , Arilamina N-Acetiltransferase/metabolismo , Encéfalo/embriologia , Encéfalo/enzimologia , Ritmo Circadiano/genética , Clonagem Molecular , Elementos de DNA Transponíveis/genética , DNA Complementar/análise , DNA Complementar/genética , Sistema Digestório/embriologia , Sistema Digestório/enzimologia , Drosophila melanogaster/enzimologia , Drosophila melanogaster/fisiologia , Embrião não Mamífero/enzimologia , Éxons/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação Enzimológica da Expressão Gênica , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Mutação/genética , Sistema Nervoso/embriologia , Sistema Nervoso/enzimologia , RNA/análise , RNA/genética , Análise de Sequência de DNA , Especificidade por Substrato , Transcrição Gênica/genética
12.
Cell Death Differ ; 19(10): 1590-601, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22498699

RESUMO

Understanding mechanisms controlling neuronal cell death and survival under conditions of altered energy supply (e.g., during stroke) is fundamentally important for the development of therapeutic strategies. The function of autophagy herein is unclear, as both its beneficial and detrimental roles have been described. We previously demonstrated that loss of AMP-activated protein kinase (AMPK), an evolutionarily conserved enzyme that maintains cellular energy balance, leads to activity-dependent degeneration in neuronal tissue. Here, we show that energy depletion in Drosophila AMPK mutants results in increased autophagy that convincingly promotes, rather than rescues, neurodegeneration. The generated excessive autophagic response is accompanied by increased TOR and S6K activity in the absence of an AMPK-mediated negative regulatory feedback loop. Moreover, energy-depleted neurons use a phagocytic-like process as a means to cellular survival at the expense of surrounding cells. Consequently, phagocytosis stimulation by expression of the scavenger receptor Croquemort significantly delays neurodegeneration. This study thus reveals a potentially novel strategy for cellular survival during conditions of extreme energy depletion, resembling xeno-cannibalistic events seen in metastatic tumors. We provide new insights into the roles of autophagy and phagocytosis in the neuronal metabolic stress response and open new avenues into understanding of human disease and development of therapeutic strategies.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Autofagia/efeitos dos fármacos , Citofagocitose/efeitos dos fármacos , Cloreto de Lítio/farmacologia , Proteínas Quinases Ativadas por AMP/deficiência , Proteínas Quinases Ativadas por AMP/genética , Animais , Drosophila/enzimologia , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Metabolismo Energético , Neurônios/citologia , Neurônios/metabolismo , Proteínas Quinases S6 Ribossômicas/metabolismo , Serina-Treonina Quinases TOR/metabolismo
13.
Rouxs Arch Dev Biol ; 204(4): 229-243, 1995 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28306118

RESUMO

The spectrum of lectin binding sites as it emerges during embryonic development of Drosophila was analysed by means of fluorescein-labelled lectins. As development and morphogenesis proceed, the reaction pattern becomes more and more complex. Mannose/glucose-, mannose-, N-acetylglucosamine- and poly-N-ace-tylglucosamine-specific lectins bind ubiquitously. Nuclear envelopes only have binding sites for wheat germ agglutinin. N-acetylgalactosamine-binding lectins are specific for ectodermal derivatives. Gaß-3-N-acetylgalac-tosamine-binding lectins are highly selective markers for neural structures, haemocytes and Garland cells. It is also shown that Drosophila laminin is differentially glycosylated. The possible implications of differential and germ layer-specific glycosylation are discussed.

14.
Comp Biochem Physiol Comp Physiol ; 101(4): 639-51, 1992 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-1351436

RESUMO

1. If a few exceptions are disregarded, the several somatic cell types of a differentiated organism all have an identical genome. They all differ in their plasma membrane-cytoskeletal complex. 2. Differences in plasma membrane properties usually result in differences in ionic concentrations/activities in the cytoplasm and nucleoplasm. A basic question therefore is whether there exists a causal relationship between the ionic environment of the nucleus and differential gene expression/protein synthesis. 3. Development is switched on by a "Ca2+ explosion", often accompanied by pH changes and plasma membrane depolarisation. The penetration of the spermatozoon in the plasma membrane acts as a trigger. 4. All animal species develop from a blastula. At this stage they organise themselves as an epithelium enclosing an inner (fluid) compartment. This suggests that epithelium formation is absolutely essential in animal development. 5. As development proceeds, more and more compartments, lined by different epithelia, are formed. Differentiated organisms largely consist of folded epithelia. Some cells leave their original epithelial environment and become free floating (e.g. blood cells) or engage in other types of organisation. 6. Epithelial cells have the ability to segregate some membrane proteins, e.g. receptors, ion pumps, ion channels etc., so as to make selective transcellular transport possible. The cytoskeleton plays an important role in this segregation and in the interconnection of epithelial cells. 7. Transembryonic electric currents which have been measured by the vibrating probe technique, are due to electrogenic ion transport by epithelia. 8. Segregation of membrane proteins is not an exclusive property of epithelial cells but it is probably a property of all animal cell types, single cells inclusive; asymmetry is the rule, symmetry--if it exists at all--the exception. 9. Differences in several plasma membrane proteins (receptors, ion transporting molecules, cell adhesion molecules and signal transducing systems) are not only causally related to differential transcellular transport but also indirectly to differential protein synthesis and hence to differentiation. There are already a few well documented examples of "electrical" control of gene expression. 10. The major "strategy" which applies in differentiation seems to be to keep the genome constant but to change over and over its ionic and macromolecular environment, both acting in a complementary way. The first one may be considered as the coarse tuning mechanism of gene expression-protein synthesis, the second as the fine one. In our opinion this might be a principle universal to differentiation processes in all animal species.


Assuntos
Diferenciação Celular , Citoesqueleto/fisiologia , Animais , Transporte Biológico , Membrana Celular/metabolismo , Membrana Celular/fisiologia , Citoesqueleto/metabolismo , Células Epiteliais , Epitélio/metabolismo , Expressão Gênica , Íons , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo
15.
Int J Biochem ; 24(12): 1907-16, 1992 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-1473603

RESUMO

1. Changes in turgor, in cell volume, in membrane potential, in intracellular ionic activities and, more recently, in spontaneous electrical activity have been reported to be causally linked to the expression of specific genes. 2. As a result, it has become clear that changes in membrane properties and/or in the intracellular "ionic environment" can play an important role in generating cell type specific physiological responses which indirectly--or maybe directly--affect gene expression. 3. Possible targets of the ionic "environment" are: the selective transport across biological membranes; the activity of certain (regulatory) enzymes; the conformation of some (regulatory) proteins; of chromatin; of the cytoskeleton; of the nuclear matrix; the association of the cytoskeleton with plasmamembrane proteins or RNA; the association chromatin-nuclear matrix; protein-DNA and protein-protein interactions etc. All these sites may be instrumental to "fine or coarse" tuning of gene expression. 4. The exact mechanisms by which changes in intracellular ionic environment are transduced, directly or indirectly, into alterations of the activity of trans-acting factors have not yet been fully uncovered. Changes in the degree of phosphorylation of regulatory proteins and/or of trans-acting factors may provoke fine tuning effects on cell type specific gene expression activity. 5. The intranuclear ionic environment is difficult to measure in an exact way. It can be influenced in a number of ways. The location of a gene, as determined by the position of the nucleus in the cytoplasm and by the association of chromatin to the nuclear matrix may be especially important in cells which can generate some type of intracellular gradient or in excitable cells. 6. In some somatic cell types--germinal vesicles may behave differently--the intranuclear inorganic ionic "environment" has been reported to be distinct from the cytoplasmic one. This challenges the widespread assumption that the nuclear envelope is always freely permeable to small molecules and inorganic ions. 7. It can be expected that the fast progress in the cloning of "electrically" controlled genes, in the identification of trans-acting factors, in their mode of interaction with genes and in the precise localization of genes within the nucleus may soon lead to substantial progress in this domain.


Assuntos
Regulação da Expressão Gênica/fisiologia , Animais , Membrana Celular/metabolismo , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Eletroquímica , Humanos , Íons , Concentração Osmolar
16.
Development ; 124(4): 817-25, 1997 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-9043063

RESUMO

The Pax-6 genes of vertebrates and invertebrates encode transcription factors with both a paired domain and a homeodomain. They are expressed in the developing eye and in the central nervous system. Loss-of-function mutations in mammals and in flies result in a reduction or absence of eyes and targeted expression of the Drosophila and the mouse Pax-6 genes induces ectopic eye structures in Drosophila. These findings lead to the proposal that the morphogenesis of the different types of eyes is controlled by a Pax-6-dependent genetic pathway and that the various eye types are of monophyletic origin. We have isolated a Pax-6 homologous gene from the ascidian Phallusia mammillata, because ascidians occupy an important position in early chordate evolution. Furthermore, the Phallusia larva has a simple photosensitive ocellus. Phallusia Pax-6 shares extensive sequence identity and conserved genomic organization with the known Pax-6 genes of vertebrates and invertebrates. Expression of Phallusia Pax-6 is first detected at late gastrula stages in distinct regions of the developing neural plate. At the tailbud stage, it is expressed in the spinal cord and the brain vesicle, where the sensory organs (ocellus and otolith) form, suggesting an important function in their development. Ectopic expression of the ascidian Pax-6 gene in Drosophila leads to the induction of supernumerary eyes indicating a highly conserved gene regulatory function for Pax-6 genes.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas de Homeodomínio , Células Fotorreceptoras de Invertebrados/embriologia , Fatores de Transcrição/genética , Urocordados/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Diferenciação Celular/genética , Divisão Celular , Clonagem Molecular , Sequência Conservada , Proteínas de Ligação a DNA/química , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Embrião não Mamífero/citologia , Evolução Molecular , Proteínas do Olho , Regulação da Expressão Gênica no Desenvolvimento/genética , Genes Homeobox , Hibridização In Situ , Dados de Sequência Molecular , Fator de Transcrição PAX6 , Fatores de Transcrição Box Pareados , Células Fotorreceptoras de Invertebrados/metabolismo , Reação em Cadeia da Polimerase , Proteínas Repressoras , Mapeamento por Restrição , Homologia de Sequência de Aminoácidos , Fatores de Transcrição/química , Urocordados/embriologia
17.
Exp Cell Res ; 248(2): 350-7, 1999 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-10222127

RESUMO

To gain insight into the function of the developmentally regulated A-type lamins we transformed Drosophila melanogaster with a construct containing the hsp70 promoter followed by the Drosophila lamin C (an analog of vertebrate A-type lamins) cDNA. Lamin C was expressed ectopically after heat shock of embryos and localized to the nucleus. No phenotypic change was observed after lamin C expression in embryos that normally do not contain lamin C. However, ectopic expression of lamin C during most larval (but not pupal) stages stalled growth, inhibited ecdysteroid signaling (in particular during the larval-prepupal transition), resulted in development of melanotic tumors, and finally caused death. During pupation in control animals, when massive apoptosis of larval tissues takes place, lamin C is proteolyzed into a fragment with a size similar to that predicted by caspase cleavage. The ectopically expressed lamin C is identically cleaved, resulting in a large increase of the steady-state level of the lamin C fragment. A null mutation of the dcp-1 gene, one of the two known Drosophila caspase genes, also results in development of melanotic tumors and larval death, suggesting that the ectopically expressed lamin C inhibits apoptosis through competitive inhibition of caspase activity.


Assuntos
Inibidores de Caspase , Drosophila melanogaster/crescimento & desenvolvimento , Lamina Tipo A , Proteínas Nucleares/biossíntese , Proteínas Nucleares/genética , Fatores Etários , Animais , Animais Geneticamente Modificados , Genes Letais , Proteínas de Choque Térmico HSP70/genética , Resposta ao Choque Térmico , Laminas , Larva/crescimento & desenvolvimento , Melaninas , Neoplasias
18.
J Exp Zool ; 285(4): 378-86, 1999 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-10578111

RESUMO

Cnidaria are the most basal animal phylum in which smooth and striated muscle cells have evolved. Since the ultrastructure of the mononucleated striated muscle is similar to that of higher animals, it is of interest to compare the striated muscle of Cnidaria at the molecular level to that of triploblastic phyla. We have used tropomyosins, a family of actin binding proteins to address this question. Throughout the animal kingdom, a great diversity of tropomyosin isoforms is found in non-muscle cells but only a few conserved tropomyosins are expressed in muscle cells. Muscle tropomyosins are all similar in length and share conserved termini. Two cnidarian tropomyosins have been described previously but neither of them is expressed in striated muscle cells. Here, we have characterized a new tropomyosin gene Tpm2 from the hydrozoan Podocoryne carnea. Expression analysis by RT-PCR and by whole mount in situ hybridization demonstrate that Tpm2 is exclusively expressed in striated muscle cells of the medusa. The Tpm2 protein is shorter in length than its counterparts from higher animals and differs at both amino and carboxy termini from striated muscle isoforms of higher animals. Interestingly, Tpm2 differs considerably from Tpm1 (only 19% identity) which was described previously in Podocoryne carnea. This divergence indicates a functional separation of cytoskeletal and striated muscle tropomyosins in cnidarians. These data contribute to our understanding of the evolution of the tropomyosin gene family and demonstrate the recruitment of tropomyosin into hydrozoan striated muscles during metazoan evolution. J. Exp. Zool. (Mol. Dev. Evol.) 285:378-386, 1999.


Assuntos
Duplicação Gênica , Músculo Esquelético/metabolismo , Cifozoários/fisiologia , Tropomiosina/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Clonagem Molecular , Primers do DNA/química , DNA Complementar/análise , Humanos , Hibridização In Situ , Dados de Sequência Molecular , Estrutura Molecular , RNA/análise , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Especificidade da Espécie , Transcrição Gênica , Tropomiosina/metabolismo
19.
Annu Rev Neurosci ; 20: 483-532, 1997.
Artigo em Inglês | MEDLINE | ID: mdl-9056723

RESUMO

Pax-6 is a member of the Pax gene class and encodes a protein containing a paired domain and a homeodomain. The molecular characterization of Pax-6 genes from species of different animal phyla and the analysis of Pax-6 function in the developing eyes and central nervous system of vertebrates, Drosophila melanogaster, and Caenorhabditis elegans suggest that Pax-6 homologues share conserved functions. In this review, we present recent data on the structural and functional characterization of Pax-6 homologues from species of different animal phyla. We discuss the implications of these findings for our understanding of the development and evolution of eyes and nervous systems.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/fisiologia , Proteínas de Homeodomínio , Fatores de Transcrição/fisiologia , Animais , Evolução Biológica , Proteínas do Olho , Fator de Transcrição PAX6 , Fatores de Transcrição Box Pareados , Proteínas Repressoras , Fatores de Transcrição/metabolismo
20.
Proc Natl Acad Sci U S A ; 97(9): 4525-9, 2000 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-10781056

RESUMO

We have identified a sine oculis gene in the planarian Girardia tigrina (Platyhelminthes; Turbellaria; Tricladida). The planarian sine oculis gene (Gtso) encodes a protein with a sine oculis (Six) domain and a homeodomain that shares significant sequence similarity with so proteins assigned to the Six-2 gene family. Gtso is expressed as a single transcript in both regenerating and fully developed eyes. Whole-mount in situ hybridization studies show exclusive expression in photoreceptor cells. Loss of function of Gtso by RNA interference during planarian regeneration inhibits eye regeneration completely. Gtso is also essential for maintenance of the differentiated state of photoreceptor cells. These results, combined with the previously demonstrated expression of Pax-6 in planarian eyes, suggest that the same basic gene regulatory circuit required for eye development in Drosophila and mouse is used in the prototypic eye spots of platyhelminthes and, therefore, is truly conserved during evolution.


Assuntos
Evolução Biológica , Proteínas de Drosophila , Proteínas do Olho/genética , Olho/embriologia , Genes Homeobox , Proteínas de Homeodomínio/genética , Planárias/fisiologia , Regeneração , Sequência de Aminoácidos , Animais , Sequência Conservada , Drosophila , Evolução Molecular , Humanos , Camundongos , Dados de Sequência Molecular , Família Multigênica , Filogenia , Planárias/genética , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA