RESUMO
Three-dimensional extrusion bioprinting technology aims to become a fundamental tool for tissue regeneration using cell-loaded hydrogels. These biomaterials must have highly specific mechanical and biological properties that allow them to generate biosimilar structures by successive layering of material while maintaining cell viability. The rheological properties of hydrogels used as bioinks are critical to their printability. Correct printability of hydrogels allows the replication of biomimetic structures, which are of great use in medicine, tissue engineering and other fields of study that require the three-dimensional replication of different tissues. When bioprinting cell-loaded hydrogels, a small amount of culture medium can be added to ensure adequate survival, which can modify the rheological properties of the hydrogels. GelMA is a hydrogel used in bioprinting, with very interesting properties and rheological parameters that have been studied and defined for its basic formulation. However, the changes that occur in its rheological parameters and therefore in its printability, when it is mixed with the culture medium necessary to house the cells inside, are unknown. Therefore, in this work, a comparative study of GelMA 100% and GelMA in the proportions 3:1 (GelMA 75%) and 1:1 (GelMA 50%) with culture medium was carried out to determine the printability of the gel (using a device of our own invention), its main rheological parameters and its toxicity after the addition of the medium and to observe whether significant differences in cell viability occur. This raises the possibility of its use in regenerative medicine using a 3D extrusion bioprinter.
RESUMO
The inner ear is a complex three-dimensional sensorial structure with auditory and vestibular functions. This intricate sensory organ originates from the otic placode, which generates the sensory elements of the membranous labyrinth, as well as all the ganglionic neuronal precursors. How auditory and vestibular neurons establish their fate identities remains to be determined. Their topological origin in the incipient otic placode could provide positional information before they migrate, to later segregate in specific portions of the acoustic and vestibular ganglia. To address this question, transplants of small portions of the avian otic placode were performed according to our previous fate map study, using the quail/chick chimeric graft model. All grafts taking small areas of the neurogenic placodal domain contributed neuroblasts to both acoustic and vestibular ganglia. A differential distribution of otic neurons in the anterior and posterior lobes of the vestibular ganglion, as well as in the proximal, intermediate, and distal portions of the acoustic ganglion, was found. Our results clearly show that, in birds, there does not seem to be a strict segregation of acoustic and vestibular neurons in the incipient otic placode.
RESUMO
The vertebrate inner ear is a complex three-dimensional sensorial structure with auditory and vestibular functions, regarded as an excellent system for analyzing events that occur during development, such as patterning, morphogenesis, and cell specification. Retinoic acid (RA) is involved in all these development processes. Cellular retinoic acid-binding proteins (CRABPs) bind RA with high affinity, buffering cellular free RA concentrations and consequently regulating the activation of precise specification programs mediated by particular regulatory genes. In the otic vesicle, strong CRABP-I expression was detected in the otic wall's dorsomedial aspect, where the endolymphatic apparatus develops, whereas this expression was lower in the ventrolateral aspect, where part of the auditory system forms. Thus, CRABP-I proteins may play a role in the specification of the dorsal-to-ventral and lateral-to-medial axe of the otic anlagen. Regarding the developing sensory patches, a process partly involving the subdivision of a ventromedial pro-sensory domain, the CRABP-I gene displayed different levels of expression in the presumptive territory of each sensory patch, which was maintained throughout development. CRABP-I was also relevant in the acoustic-vestibular ganglion and in the periotic mesenchyme. Therefore, CRABP-I could protect RA-sensitive cells in accordance with its dissimilar concentration in specific areas of the developing chick inner ear.
RESUMO
The thalamocortical projections are part of the most important higher level processing connections in the vertebrates and follow a highly ordered pathway from their origin in the thalamus to the cerebral cortex. Their functional complexities are not only due to an extremely elaborate axon guidance process but also due to activity-dependent mechanisms. Gli2 is an intermediary transcription factor in the Sonic hedgehog (Shh) pathway. During neural early development, Shh has an important role in dorsoventral patterning, diencephalic anteroposterior patterning, and many later developmental processes, such as axon guidance and cell migration. Using a Gli2 knockout mouse line, we have studied the role of Shh signaling mediated by Gli2 in the development of the thalamocortical projections during embryonic development. In wild-type brains, we have described the normal trajectory of the thalamocortical axons into the context of the prosomeric model. Then, we have compared it with the altered thalamocortical axons course in Gli2 homozygous embryos. The thalamocortical axons followed different trajectories and were misdirected to other territories probably due to alterations in the Robo/Slit signaling mechanism. In conclusion, the alteration of Gli2-mediated Shh signaling produces an erroneous specification of several territories related with the thalamocortical axons. This is translated into a huge modification in the pathfinding signaling mechanisms needed for the correct wiring of the thalamocortical axons.