Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Annu Rev Pharmacol Toxicol ; 58: 253-270, 2018 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-28968189

RESUMO

The human microbiome contains a vast source of genetic and biochemical variation, and its impacts on therapeutic responses are just beginning to be understood. This expanded understanding is especially important because the human microbiome differs far more among different people than does the human genome, and it is also dramatically easier to change. Here, we describe some of the major factors driving differences in the human microbiome among individuals and populations. We then describe some of the many ways in which gut microbes modify the action of specific chemotherapeutic agents, including nonsteroidal anti-inflammatory drugs and cardiac glycosides, and outline the potential of fecal microbiota transplant as a therapeutic. Intriguingly, microbes also alter how hosts respond to therapeutic agents through various pathways acting at distal sites. Finally, we discuss some of the computational and practical issues surrounding use of the microbiome to stratify individuals for drug response, and we envision a future where the microbiome will be modified to increase everyone's potential to benefit from therapy.


Assuntos
Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/fisiologia , Microbiota/efeitos dos fármacos , Microbiota/fisiologia , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Glicosídeos Cardíacos/farmacologia , Glicosídeos Cardíacos/uso terapêutico , Humanos , Transdução de Sinais/efeitos dos fármacos
2.
Annu Rev Genomics Hum Genet ; 18: 65-86, 2017 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-28375652

RESUMO

Over the past few years, microbiome research has dramatically reshaped our understanding of human biology. New insights range from an enhanced understanding of how microbes mediate digestion and disease processes (e.g., in inflammatory bowel disease) to surprising associations with Parkinson's disease, autism, and depression. In this review, we describe how new generations of sequencing technology, analytical advances coupled to new software capabilities, and the integration of animal model data have led to these new discoveries. We also discuss the prospects for integrating studies of the microbiome, metabolome, and immune system, with the goal of elucidating mechanisms that govern their interactions. This systems-level understanding will change how we think about ourselves as organisms.


Assuntos
Sistema Imunitário , Metaboloma , Metagenoma , Microbiota/genética , Análise de Sequência de DNA , Animais , Humanos
3.
BMC Biol ; 17(1): 47, 2019 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-31189482

RESUMO

BACKGROUND: Use of skin personal care products on a regular basis is nearly ubiquitous, but their effects on molecular and microbial diversity of the skin are unknown. We evaluated the impact of four beauty products (a facial lotion, a moisturizer, a foot powder, and a deodorant) on 11 volunteers over 9 weeks. RESULTS: Mass spectrometry and 16S rRNA inventories of the skin revealed decreases in chemical as well as in bacterial and archaeal diversity on halting deodorant use. Specific compounds from beauty products used before the study remain detectable with half-lives of 0.5-1.9 weeks. The deodorant and foot powder increased molecular, bacterial, and archaeal diversity, while arm and face lotions had little effect on bacterial and archaeal but increased chemical diversity. Personal care product effects last for weeks and produce highly individualized responses, including alterations in steroid and pheromone levels and in bacterial and archaeal ecosystem structure and dynamics. CONCLUSIONS: These findings may lead to next-generation precision beauty products and therapies for skin disorders.


Assuntos
Cosméticos/efeitos adversos , Microbiota/efeitos dos fármacos , Higiene da Pele/efeitos adversos , Pele/efeitos dos fármacos , Adulto , Cosméticos/classificação , Feminino , Humanos , Masculino , Pele/química , Pele/microbiologia
4.
Exp Dermatol ; 26(5): 388-391, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27892611

RESUMO

Axillary malodour is a frustrating condition for many people. It can lead to significant discomforts and various psychological effects. The underarm microbiome plays a major role in axillary malodour formation. Not only the bacteria on the epidermis, but also and especially those living in the sweat glands, sweat pores and hair follicles play a pivotal role in malodour development. To treat underarm malodour, this viewpoint article envisions a bacterial treatment. Replacing the autochthonous malodour-causing microbiome with a non-odour-causing microbiome, through an armpit bacterial transplantation or direct application of probiotics/non-odour-causing bacteria, could resolve the condition. Selective steering of the microbiome with prebiotics, biochemicals or plant extracts can likewise greatly help in improving the underarm odour. Elimination/inhibition of the "bad bugs" and application/stimulation of the "good bugs" will be part of the future treatment for axillary body odour.


Assuntos
Axila/microbiologia , Odorantes/prevenção & controle , Probióticos , Antiperspirantes/farmacologia , Desodorantes/farmacologia , Humanos , Microbiota/efeitos dos fármacos
5.
Appl Environ Microbiol ; 80(21): 6611-9, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25128346

RESUMO

Clothing textiles protect our human body against external factors. These textiles are not sterile and can harbor high bacterial counts as sweat and bacteria are transmitted from the skin. We investigated the microbial growth and odor development in cotton and synthetic clothing fabrics. T-shirts were collected from 26 healthy individuals after an intensive bicycle spinning session and incubated for 28 h before analysis. A trained odor panel determined significant differences between polyester versus cotton fabrics for the hedonic value, the intensity, and five qualitative odor characteristics. The polyester T-shirts smelled significantly less pleasant and more intense, compared to the cotton T-shirts. A dissimilar bacterial growth was found in cotton versus synthetic clothing textiles. Micrococci were isolated in almost all synthetic shirts and were detected almost solely on synthetic shirts by means of denaturing gradient gel electrophoresis fingerprinting. A selective enrichment of micrococci in an in vitro growth experiment confirmed the presence of these species on polyester. Staphylococci were abundant on both cotton and synthetic fabrics. Corynebacteria were not enriched on any textile type. This research found that the composition of clothing fibers promotes differential growth of textile microbes and, as such, determines possible malodor generation.


Assuntos
Bactérias/classificação , Bactérias/metabolismo , Biota , Vestuário , Gossypium , Odorantes , Poliésteres , Bactérias/crescimento & desenvolvimento , Bactérias/isolamento & purificação , DNA Bacteriano/química , DNA Bacteriano/genética , Humanos , Dados de Sequência Molecular , Análise de Sequência de DNA
6.
mSystems ; 8(1): e0092222, 2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36722970

RESUMO

With growing awareness that what we put in and on our bodies affects our health and wellbeing, little is still known about the impact of textiles on the human skin. Athletic wear often uses silver threading to improve hygiene, but little is known about its effect on the body's largest organ. In this study, we investigated the impact of such clothing on the skin's chemistry and microbiome. Samples were collected from different body sites of a dozen volunteers over the course of 12 weeks. The changes induced by the antibacterial clothing were specific for individuals, but more so defined by gender and body site. Unexpectedly, the microbial biomass on skin increased in the majority of the volunteers when wearing silver-threaded T-shirts. Although the most abundant taxa remained unaffected, silver caused an increase in diversity and richness of low-abundant bacteria and a decrease in chemical diversity. Both effects were mainly observed for women. The hallmark of the induced changes was an increase in the abundance of various monounsaturated fatty acids (MUFAs), especially in the upper back. Several microbe-metabolite associations were uncovered, including Cutibacterium, detected in the upper back area, which was correlated with the distribution of MUFAs, and Anaerococcus spp. found in the underarms, which were associated with a series of different bile acids. Overall, these findings point to a notable impact of the silver-threaded material on the skin microbiome and chemistry. We observed that relatively subtle changes in the microbiome result in pronounced shifts in molecular composition. IMPORTANCE The impact of silver-threaded material on human skin chemistry and microbiome is largely unknown. Although the most abundant taxa remained unaffected, silver caused an increase in diversity and richness of low-abundant bacteria and a decrease in chemical diversity. The major change was an increase in the abundance of various monounsaturated fatty acids that were also correlated with Cutibacterium. Additionally, Anaerococcus spp., found in the underarms, were associated with different bile acids in the armpit samples. Overall, the impact of the silver-threaded clothing was gender and body site specific.


Assuntos
Microbiota , Propionibacteriaceae , Humanos , Feminino , Prata/análise , Vestuário , Pele/química , Têxteis , Bactérias/genética
7.
Front Med (Lausanne) ; 10: 1185779, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37822474

RESUMO

Detection dogs were trained to detect SARS-CoV-2 infection based on armpit sweat odor. Sweat samples were collected using cotton pads under the armpits of negative and positive human patients, confirmed by qPCR, for periods of 15-30 min. Multiple hospitals and organizations throughout Belgium participated in this study. The sweat samples were stored at -20°C prior to being used for training purposes. Six dogs were trained under controlled atmosphere conditions for 2-3 months. After training, a 7-day validation period was conducted to assess the dogs' performances. The detection dogs exhibited an overall sensitivity of 81%, specificity of 98%, and an accuracy of 95%. After validation, training continued for 3 months, during which the dogs' performances remained the same. Gas chromatography/mass spectrometry (GC/MS) analysis revealed a unique sweat scent associated with SARS-CoV-2 positive sweat samples. This scent consisted of a wide variety of volatiles, including breakdown compounds of antiviral fatty acids, skin proteins and neurotransmitters/hormones. An acceptability survey conducted in Belgium demonstrated an overall high acceptability and enthusiasm toward the use of detection dogs for SARS-CoV-2 detection. Compared to qPCR and previous canine studies, the detection dogs have good performances in detecting SARS-CoV-2 infection in humans, using frozen sweat samples from the armpits. As a result, they can be used as an accurate pre-screening tool in various field settings alongside the PCR test.

8.
Microorganisms ; 9(6)2021 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-34073029

RESUMO

The skin microbiome has become a hot field of research in the last few years. The emergence of next-generation sequencing has given unprecedented insights into the impact and involvement of microbiota in skin conditions. More and more cosmetics contain probiotics or bacteria as an active ingredient, with or without scientific data. This research is also acknowledged by the textile industry. There has been a more holistic approach on how the skin and textile microbiome interacts and how they influence the pH, moisture content and odour generation. To date, most of the ingredients have a broad-spectrum antibacterial action. This manuscript covers the current research and industry developments in the field of skin and textiles. It explores the nature of antimicrobial finishing in textiles which can disrupt the skin microbiome, and the benefits of more natural and microbiome friendly therapies to combat skin conditions, malodour and skin infection.

9.
Front Cell Infect Microbiol ; 11: 806476, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35071053

RESUMO

Human skin microbiome dysbiosis can have clinical consequences. Characterizing taxonomic composition of bacterial communities associated with skin disorders is important for dermatological advancement in both diagnosis and novel treatments. This study aims to analyze and improve the accuracy of taxonomic classification of skin bacteria with MinION™ nanopore sequencing using a defined skin mock community and a skin microbiome sample. We compared the Oxford Nanopore Technologies recommended procedures and concluded that their protocols highly bias the relative abundance of certain skin microbiome genera, most notably a large overrepresentation of Staphylococcus and underrepresentation of Cutibacterium and Corynebacterium. We demonstrated that changes in the amplification protocols improved the accuracy of the taxonomic classification for these three main skin bacterial genera. This study shows that MinION™ nanopore could be an efficient technology for full-length 16S rRNA sequencing; however, the analytical advantage is strongly influenced by the methodologies. The suggested alternatives in the sample processing improved characterization of a complex skin microbiome community using MinION™ nanopore sequencing.


Assuntos
Microbiota , Sequenciamento por Nanoporos , Pele/microbiologia , Genes de RNAr , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Microbiota/genética , RNA Ribossômico 16S/genética , RNA Ribossômico 23S/genética , Análise de Sequência de DNA
10.
Comput Struct Biotechnol J ; 19: 624-631, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33510866

RESUMO

Many skin conditions are associated with an imbalance in the skin microbiome. In recent years, the skin microbiome has become a hot topic, for both therapeutic and cosmetic purposes. The possibility of manipulating the human skin microbiome to address skin conditions has opened exciting new paths for therapy. Here we review the skin microbiome manipulation strategies, ranging from skin microbiome transplantation, over skin bacteriotherapy to the use of prebiotics, probiotics and postbiotics. We summarize all efforts undertaken to exchange, manipulate, transplant or selectively apply the skin microbiome to date. Multiple microbial groups have been targeted, since they have been proven to be beneficial for skin health. We focus on the most common skin disorders and their associated skin microbiome dysbiosis and we review the existing scientific data and clinical trials undertaken to combat these skin conditions. The skin microbiome represents a novel platform for therapy. Transplantation of a complete microbiome or application of single strains has demonstrated beneficial therapeutic application.

11.
Microorganisms ; 9(2)2021 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-33670115

RESUMO

The microbiome plays an important role in a wide variety of skin disorders. Not only is the skin microbiome altered, but also surprisingly many skin diseases are accompanied by an altered gut microbiome. The microbiome is a key regulator for the immune system, as it aims to maintain homeostasis by communicating with tissues and organs in a bidirectional manner. Hence, dysbiosis in the skin and/or gut microbiome is associated with an altered immune response, promoting the development of skin diseases, such as atopic dermatitis, psoriasis, acne vulgaris, dandruff, and even skin cancer. Here, we focus on the associations between the microbiome, diet, metabolites, and immune responses in skin pathologies. This review describes an exhaustive list of common skin conditions with associated dysbiosis in the skin microbiome as well as the current body of evidence on gut microbiome dysbiosis, dietary links, and their interplay with skin conditions. An enhanced understanding of the local skin and gut microbiome including the underlying mechanisms is necessary to shed light on the microbial involvement in human skin diseases and to develop new therapeutic approaches.

12.
Nat Biotechnol ; 39(2): 169-173, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33169034

RESUMO

We engineered a machine learning approach, MSHub, to enable auto-deconvolution of gas chromatography-mass spectrometry (GC-MS) data. We then designed workflows to enable the community to store, process, share, annotate, compare and perform molecular networking of GC-MS data within the Global Natural Product Social (GNPS) Molecular Networking analysis platform. MSHub/GNPS performs auto-deconvolution of compound fragmentation patterns via unsupervised non-negative matrix factorization and quantifies the reproducibility of fragmentation patterns across samples.


Assuntos
Algoritmos , Cromatografia Gasosa-Espectrometria de Massas , Metabolômica , Animais , Anuros , Humanos
13.
Am J Clin Dermatol ; 21(Suppl 1): 4-11, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32910439

RESUMO

Advances in sequencing, bioinformatics and analytics now allow the structure, function and interrelations of whole microbial communities to be studied in greater detail. Collaborative efforts and multidisciplinary studies, crossing the boundary between environmental and medical microbiology, have allowed specific environmental, animal and human microbiomes to be characterized. One of the main challenges for microbial ecology is to link the phylogenetic diversity of host-associated microbes to their functional roles within the community. Much remains to be learned on the way microbes colonize the skin of different living organisms and the way the skin microbiome reacts to the surrounding environment (air, water, etc.). In this review, we discuss examples of recent studies that have used modern technology to provide insights into microbial communities in water and on skin, such as those in natural resources (thermal spring water), large mammals (humpback whales) and humans (the skin microbiome). The results of these studies demonstrate how a greater understanding of the structure and functioning of microbiota, together with their interactions with the environment, may facilitate the discovery of new probiotics or postbiotics, provide indicators for the quality of the environment, and show how changes in lifestyle and living environment, such as urbanization, can impact on the skin microbiome and skin health and disease in humans.


Assuntos
Jubarte/microbiologia , Microbiota/fisiologia , Pele/microbiologia , Microbiologia da Água , Animais , Humanos , Filogenia
14.
Microorganisms ; 8(11)2020 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-33142874

RESUMO

The development of malodour on clothing is a well-known problem with social, economic and ecological consequences. Many people still think malodour is the result of a lack of hygiene, which causes social stigma and embarrassment. Clothing is washed more frequently due to odour formation or even discarded when permastink develops. The malodour formation process is impacted by many variables and processes throughout the textile lifecycle. The contact with the skin with consequent transfer of microorganisms, volatiles and odour precursors leads to the formation of a distinctive textile microbiome and volatilome. The washing and drying processes further shape the textile microbiome and impact malodour formation. These processes are impacted by interindividual differences and fabric type as well. This review describes the current knowledge on the volatilome and microbiome of the skin, textile and washing machine, the multiple factors that determine malodour formation on textiles and points out what information is still missing.

15.
Front Microbiol ; 11: 577474, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33250870

RESUMO

The use of additives in food products has become an important public health concern. In recent reports, dietary emulsifiers have been shown to affect the gut microbiota, contributing to a pro-inflammatory phenotype and metabolic syndrome. So far, it is not yet known whether similar microbiome shifts are observable for a more diverse set of emulsifier types and to what extent these effects vary with the unique features of an individual's microbiome. To bridge this gap, we investigated the effect of five dietary emulsifiers on the fecal microbiota from 10 human individuals upon a 48 h exposure. Community structure was assessed with quantitative microbial profiling, functionality was evaluated by measuring fermentation metabolites, and pro-inflammatory properties were assessed with the phylogenetic prediction algorithm PICRUSt, together with a TLR5 reporter cell assay for flagellin. A comparison was made between two mainstream chemical emulsifiers (carboxymethylcellulose and P80), a natural extract (soy lecithin), and biotechnological emulsifiers (sophorolipids and rhamnolipids). While fecal microbiota responded in a donor-dependent manner to the different emulsifiers, profound differences between emulsifiers were observed. Rhamnolipids, sophorolipids, and soy lecithin eliminated 91 ± 0, 89 ± 1, and 87 ± 1% of the viable bacterial population after 48 h, yet they all selectively increased the proportional abundance of putative pathogens. Moreover, profound shifts in butyrate (-96 ± 6, -73 ± 24, and -34 ± 25%) and propionate (+13 ± 24, +88 ± 50, and +29 ± 16%) production were observed for these emulsifiers. Phylogenetic prediction indicated higher motility, which was, however, not confirmed by increased flagellin levels using the TLR5 reporter cell assay. We conclude that dietary emulsifiers can severely impact the gut microbiota, and this seems to be proportional to their emulsifying strength, rather than emulsifier type or origin. As biotechnological emulsifiers were especially more impactful than chemical emulsifiers, caution is warranted when considering them as more natural alternatives for clean label strategies.

16.
J Invest Dermatol ; 140(1): 191-202.e7, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31252032

RESUMO

Dupilumab is a fully human antibody to interleukin-4 receptor α that improves the signs and symptoms of moderate to severe atopic dermatitis (AD). To determine the effects of dupilumab on Staphylococcus aureus colonization and microbial diversity on the skin, bacterial DNA was analyzed from swabs collected from lesional and nonlesional skin in a double-blind, placebo-controlled study of 54 patients with moderate to severe AD randomized (1:1) and treated with either dupilumab (200 mg weekly) or placebo for 16 weeks. Microbial diversity and relative abundance of Staphylococcus were assessed by DNA sequencing of 16S ribosomal RNA, and absolute S. aureus abundance was measured by quantitative PCR. Before treatment, lesional skin had lower microbial diversity and higher overall abundance of S. aureus than nonlesional skin. During dupilumab treatment, microbial diversity increased and the abundance of S. aureus decreased. Pronounced changes were seen in nonlesional and lesional skin. Decreased S. aureus abundance during dupilumab treatment correlated with clinical improvement of AD and biomarkers of type 2 immunity. We conclude that clinical improvement of AD that is mediated by interleukin-4 receptor α inhibition and the subsequent suppression of type 2 inflammation is correlated with increased microbial diversity and reduced abundance of S. aureus.


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Dermatite Atópica/tratamento farmacológico , Imunoterapia/métodos , Pele/microbiologia , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureus/fisiologia , Células Th2/imunologia , Citocinas/metabolismo , Progressão da Doença , Método Duplo-Cego , Feminino , Seguimentos , Humanos , Masculino , Placebos , RNA Ribossômico 16S/genética , Receptores de Interleucina-4/antagonistas & inibidores , Pele/efeitos dos fármacos
17.
Nat Microbiol ; 5(1): 108-115, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31686026

RESUMO

Urbanization represents a profound shift in human behaviour, and has considerable cultural and health-associated consequences1,2. Here, we investigate chemical and microbial characteristics of houses and their human occupants across an urbanization gradient in the Amazon rainforest, from a remote Peruvian Amerindian village to the Brazilian city of Manaus. Urbanization was found to be associated with reduced microbial outdoor exposure, increased contact with housing materials, antimicrobials and cleaning products, and increased exposure to chemical diversity. The degree of urbanization correlated with changes in the composition of house bacterial and microeukaryotic communities, increased house and skin fungal diversity, and an increase in the relative abundance of human skin-associated fungi and bacteria in houses. Overall, our results indicate that urbanization has large-scale effects on chemical and microbial exposures and on the human microbiota.


Assuntos
Biodiversidade , Exposição Ambiental/análise , Produtos Domésticos/análise , Urbanização , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Microbiologia Ambiental , Fungos/classificação , Fungos/genética , Fungos/isolamento & purificação , Habitação , Humanos , Microbiota , Floresta Úmida , América do Sul
18.
Nat Cancer ; 1(6): 620-634, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-35121975

RESUMO

Colorectal cancer (CRC) is highly prevalent in Western society, and increasing evidence indicates strong contributions of environmental factors and the intestinal microbiota to CRC initiation, progression and even metastasis. We have identified a synergistic inflammatory tumor-promoting mechanism through which the resident intestinal microbiota boosts invasive CRC development in an epithelial-to-mesenchymal transition-prone tissue environment. Intestinal epithelial cell (IEC)-specific transgenic expression of the epithelial-to-mesenchymal transition regulator Zeb2 in mice (Zeb2IEC-Tg/+) leads to increased intestinal permeability, myeloid cell-driven inflammation and spontaneous invasive CRC development. Zeb2IEC-Tg/+ mice develop a dysplastic colonic epithelium, which progresses to severely inflamed neoplastic lesions while the small intestinal epithelium remains normal. Zeb2IEC-Tg/+ mice are characterized by intestinal dysbiosis, and microbiota depletion with broad-spectrum antibiotics or germ-free rederivation completely prevents cancer development. Zeb2IEC-Tg/+ mice represent the first mouse model of spontaneous microbiota-dependent invasive CRC and will help us to better understand host-microbiome interactions driving CRC development in humans.


Assuntos
Carcinoma , Microbiota , Animais , Carcinoma/metabolismo , Colo/metabolismo , Camundongos
20.
mSystems ; 4(4)2019 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-31431508

RESUMO

A quantitative and objective indicator for skin health via the microbiome is of great interest for personalized skin care, but differences among skin sites and across human populations can make this goal challenging. A three-city (two Chinese and one American) comparison of skin microbiota from atopic dermatitis (AD) and healthy pediatric cohorts revealed that, although city has the greatest effect size (the skin microbiome can predict the originated city with near 100% accuracy), a microbial index of skin health (MiSH) based on 25 bacterial genera can diagnose AD with 83 to ∼95% accuracy within each city and 86.4% accuracy across cities (area under the concentration-time curve [AUC], 0.90). Moreover, nonlesional skin sites across the bodies of AD-active children (which include shank, arm, popliteal fossa, elbow, antecubital fossa, knee, neck, and axilla) harbor a distinct but lesional state-like microbiome that features relative enrichment of Staphylococcus aureus over healthy individuals, confirming the extension of microbiome dysbiosis across body surface in AD patients. Intriguingly, pretreatment MiSH classifies children with identical AD clinical symptoms into two host types with distinct microbial diversity and treatment effects of corticosteroid therapy. These findings suggest that MiSH has the potential to diagnose AD, assess risk-prone state of skin, and predict treatment response in children across human populations.IMPORTANCE MiSH, which is based on the skin microbiome, can quantitatively assess pediatric skin health across cohorts from distinct countries over large geographic distances. Moreover, the index can identify a risk-prone skin state and compare treatment effect in children, suggesting applications in diagnosis and patient stratification.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA