RESUMO
Classical and quantum systems are used to simulate the Ising Hamiltonian, an essential component in large-scale optimization and machine learning. However, as the system size increases, devices like quantum annealers and coherent Ising machines face an exponential drop in their success rate. Here, we introduce a novel approach involving high-dimensional embeddings of the Ising Hamiltonian and a technique called "dimensional annealing" to counteract the decrease in performance. This approach leads to an exponential improvement in the success rate and other performance metrics, slowing down the decline in performance as the system size grows. A thorough examination of convergence dynamics in high-performance computing validates the new methodology. Additionally, we suggest practical implementations using technologies like coherent Ising machines, all-optical systems, and hybrid digital systems. The proposed hyperscaling heuristics can also be applied to other quantum or classical Ising devices by adjusting parameters such as nonlinear gain, loss, and nonlocal couplings.
RESUMO
We study large networks of parametric oscillators as heuristic solvers of random Ising models. In these networks, known as coherent Ising machines, the model to be solved is encoded in the coupling between the oscillators, and a solution is offered by the steady state of the network. This approach relies on the assumption that mode competition steers the network to the ground-state solution of the Ising model. By considering a broad family of frustrated Ising models, we show that the most efficient mode does not correspond generically to the ground state of the Ising model. We infer that networks of parametric oscillators close to threshold are intrinsically not Ising solvers. Nevertheless, the network can find the correct solution if the oscillators are driven sufficiently above threshold, in a regime where nonlinearities play a predominant role. We find that for all probed instances of the model, the network converges to the ground state of the Ising model with a finite probability.
RESUMO
Coupled parametric oscillators were recently employed as simulators of artificial Ising networks, with the potential to solve computationally hard minimization problems. We demonstrate a new dynamical regime within the simplest network-two coupled parametric oscillators, where the oscillators never reach a steady state, but show persistent, full-scale, coherent beats, whose frequency reflects the coupling properties and strength. We present a detailed theoretical and experimental study and show that this new dynamical regime appears over a wide range of parameters near the oscillation threshold and depends on the nature of the coupling (dissipative or energy preserving). Thus, a system of coupled parametric oscillators transcends the Ising description and manifests unique coherent dynamics, which may have important implications for coherent computation machines.
RESUMO
From condensed matter to quantum chromodynamics, multidimensional spins are a fundamental paradigm, with a pivotal role in combinatorial optimization and machine learning. Machines formed by coupled parametric oscillators can simulate spin models, but only for Ising or low-dimensional spins. Currently, machines implementing arbitrary dimensions remain a challenge. Here, we introduce and validate a hyperspin machine to simulate multidimensional continuous spin models. We realize high-dimensional spins by pumping groups of parametric oscillators, and show that the hyperspin machine finds to a very good approximation the ground state of complex graphs. The hyperspin machine can interpolate between different dimensions by tuning the coupling topology, a strategy that we call "dimensional annealing". When interpolating between the XY and the Ising model, the dimensional annealing substantially increases the success probability compared to conventional Ising simulators. Hyperspin machines are a new computational model for combinatorial optimization. They can be realized by off-the-shelf hardware for ultrafast, large-scale applications in classical and quantum computing, condensed-matter physics, and fundamental studies.